摘要。我们提供了关于Dykstra的算法与Bregman预测的渐近行为的定量结果,著名的Dykstra算法的组合以及循环Bregman预测的方法,旨在确定最佳近似值,并在非正式设置中解决凸的可行性问题。我们提供的结果是通过证明挖掘的镜头,这是一种数学逻辑中的程序,可以从非效率证明中提取计算形式。具体而言,我们提供了低复杂性亚稳定性的高度均匀和可计算的速率,而且,我们还指定了一般情况,在这些情况下,人们可以获得充分和有效的收敛速率,尤其是欧几里得空间中Polyhedra的情况。作为我们定量分析的副产品,我们也是第一次建立了Dykstra方法与Bregman Projections的强烈收敛性。
需要一份最近的复印件,不得超过 6 个月。该复印件必须由官方机构颁发,例如出生所在州的人口统计局。医院出生证明不予接受。出生证明必须显示完整的隶属关系、父母双方的完整姓名(中间名要拼写出来)、父母双方的出生地点和日期。不接受出生证明的替代件。出生证明必须是真实复印件,带有认证机构(通常是县书记员或登记员)的手写签名,并带有颁发机构的凸印或彩色印章以及复印件的颁发日期。
本年度报告采用经英国全国造纸商协会 (NAPM) 认证的 100% 再生纸印刷。纸张符合严格的质量和环境要求,并荣获以下国际生态标签:北欧部长理事会颁发的北欧天鹅标签;蓝色天使标签(由环境评审团颁发的第一个全球环境标签);以及欧盟之花标签。
目的:每个个体的唇印都是独一无二的。唇印作为确定身份的生物特征记录之一的潜力已得到广泛认可。然而,通过比较已形成的潜在唇印来研究其可靠性的研究却很少。本研究通过比较已注册的唇印和瓷杯上已形成的潜在唇印,重点研究唇印在个人身份识别中的可靠性。材料和方法:包括 102 名年龄在 18-30 岁之间的受试者(52 名男性和 50 名女性)的样本。在标准瓷杯上制作潜在和叠加的唇印。用指纹粉显影潜在指纹。然后,将涂有唇膏的唇印记录在透明胶带上。使用数码相机用标准尺拍摄已显影的潜唇印和已记录的唇印,并进行比较。唇印采用 Tsuchihashi 提出的方案进行分类。使用 Pearson 卡方检验 (IBM SPSS 版本 20) 进行统计分析,p 值为 0.05。结果:无论性别如何,唇印都是独一无二的。他们对数字图片比较的解释证实了独特模式的存在以及提取类似于指纹的特征的可能性。III 型是研究组中观察到的最常见的模式。结论:我们得出结论,由于唇印的独特性,唇印作为生物特征记录具有高度可靠性。唇印已证明有足够的证据表明是故意记录的,并且已开发的潜印进行了比较,这可以作为最简单、最容易的比较方法之一。然而,唇印的真实性尚处于初步阶段,需要更系统的研究才能被法律纠纷接受。临床意义:研究结果可以加强唇印作为识别工具的可靠性,并讨论了唇印应用的未来可能性。关键词:生物识别、指纹、法医牙科学、唇印。世界牙科杂志 (2019):10.5005/jp-journals-10015-1629
摘要 大型 3D 曲面电子产品是微电子行业的一种趋势,因为它们具有与复杂表面共存的独特能力,同时保留了 2D 平面集成电路技术的电子功能。然而,这些曲面电子产品对制造工艺提出了巨大挑战。在这里,我们提出了一种可重构、无掩模、保形制造策略,采用类似机器人的系统,称为机器人化“转移和喷射”打印,以在复杂表面上组装各种电子设备。这种新方法是一项突破性的进步,具有在复杂表面上集成刚性芯片、柔性电子产品和保形电路的独特能力。至关重要的是,包括转移印刷、喷墨打印和等离子处理在内的每个过程都是无掩模、数字化和可编程的。机器人化技术,包括测量、表面重建和定位以及路径编程,突破了 2D 平面微加工在几何形状和尺寸方面的根本限制。转移打印首先用激光从供体基板上剥离刚性芯片或柔性电子元件,然后通过灵巧的机器人手掌将其转移到曲面上。然后,机器人电流体动力打印直接在曲面上书写亚微米结构。它们的排列组合实现了多功能保形微加工。最后,利用机器人混合打印成功地在球形表面上制造了保形加热器和天线,在有翼模型上制造了柔性智能传感皮肤,其中组装了曲面电路、柔性电容和压电传感器阵列以及刚性数模转换芯片。机器人混合打印是一种创新的打印技术,可实现 3D 曲面电子产品的增材、非接触和数字化微加工。
3 印刷电路板组装 13 .......................。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.1 PCB 设计指南 13 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..............3.2 PCB 焊盘布局建议 14 ..........。。。。。。。。。。。。。。。。。。。。。。。。............3.3 焊膏模板设计 15 ...........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.4 组件放置 15.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.5 重排 16.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
此前,飞机机身结构中连接机翼机身和垂直尾翼机身的吊耳已提交有限元分析 [2-3]。由于快速加速和复杂运动,机翼表面将承受巨大的载荷 [4]。由于弯矩最大,机翼根部将承受最大的应力集中 [5]。支架用于将机翼固定在机身框架上。机翼的弯矩和剪应力通过这些附件传递到机身 [6]。此外,疲劳是指结构部件强度在运行过程中不断下降,在极低的极限应力水平下就会发生故障。这是因为重复载荷作用的时间较长。基于静态结构分析,利用应力寿命技术和 Goodman 标准进行的疲劳寿命计算预测几何形状是安全的 [7]。因此,机翼机身吊耳连接结构采用有限元分析和疲劳寿命计算方法进行设计。
3 印刷电路板组装 13 .......................。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.1 PCB 设计指南 13 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..............3.2 PCB 焊盘布局建议 14 ..........。。。。。。。。。。。。。。。。。。。。。。。。............3.3 焊膏模板设计 15 ...........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.4 元件放置 15 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.5 回流焊 16 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。