摘要凸理论是数学的一个完善的(尽管不是主流)分支,在各种环境中的应用包括“连续”和离散的结构[14]。这种多功能性部分是因为在集合上的凸度定义类似于拓扑结构。特别是,集合x上的凸度是其子集的任何集合C,满足三个简单的公理:∅,x∈C; C在任意交集下关闭; C在嵌套工会下关闭。C的元素称为凸集。在集合x上建立凸度的一种方法是从间隔运算符开始,这是从x×x到x(此类映射也称为二进制超操作)的映射I(x,y∈I(x,x,y)和i(x,x,y)= i(y,y)= i(y,x)= i(y,x)= i(y,x)= i(y,x)= i(y,x)。我们将i(x,y)解释为“在”给定x,y∈X的所有元素的集合。随后,我自然会通过声明A集a⊂x凸面来诱导x上的凸度,但如果i(x,y)⊂a a for All x,y∈A。The most well-known examples of convexities arising this way are convexities induced by metric intervals [ x, y ] d = { z ∈ X : d ( x, z ) + d ( z, y ) = d ( x, y ) } in metric spaces and linear intervals [ x, y ] l = { αx + (1 − α ) y : α ∈ [0 , 1] } in normed spaces.实际上,固定集X上的所有凸与X上的所有间隔运算符之间都有GALOIS连接(请参阅命题2.2.1)。图理论,由于顶点对之间的多种路径,自然定义了几个间隔操作器(诱导相应的凸度)。本文结构如下。最短的路径,诱导路径,局部最短路径,无弦路径和其他路径家族产生的间隔操作员如下。如果p是图G中的路径集合,其中g中的每对顶点均与p的至少一个元素连接在一起,然后将i p(x,y)= {z∈V(g)放置在p上的某个路径上,从p连接x,y}。在本文中,我们关注由Interval Operator I P引起的全路径凸度,其中P是给定图中所有(简单)路径的集合。最初,[9]中考虑了这种特殊的凸度,并且[8]中建立了与该凸度有关的经典问题的算法方法。我们还指工作[3],其中相应的间隔运算符以抽象的方式表征。在第2节中,我们概述了所有在工作中将使用的所有基本定义和初步结果。特别是,第2.1节涵盖了图理论的基础,第2.2节介绍了凸空间,间隔运算符和图形中的全路径的所有必要背景。在第3节中,我们提出了我们的主要结果。首先,我们在第3.1节中给出了全路径凸集的新表征。也就是说,定理3.1.1提供的理论标准比[8]中的理论标准更多,该标准可以轻松地用于获取所有PATH凸集集的所有已知重要属性。此外,定理3.1.1允许我们获得块图(定理3.1.2)的新表征,并在第3.2节中计算All-Path covexity(定理3.2.1)的一般位置号。All-Path的标准