生长的脊椎动物体的抽象节奏和顺序分割依赖于分割时钟,这是一种多细胞振荡遗传网络。时钟可见为组织级运动学基因表达的运动波,这些运动波穿过前中胚层(PSM),并在每个形成段的位置停滞。在这里,我们测试了该标志性波模式是如何通过培养单个成熟PSM细胞来驱动的。我们将它们的细胞自主振荡和停滞动力学与我们在细胞分辨率下在胚胎中观察到的动力学进行了比较,发现振荡相对放慢的相似性和与分化的一致性相似。这表明细胞不需要细胞 - 超支信号来指导波模式下的发展程序。我们表明,在尾梁中退出的细胞中,一个细胞自主的时序活动会启动,然后在PSM中的前向细胞流中向下延伸,从而使用经过的时间为时钟提供位置信息。外源性FGF延长了细胞中性计时器的持续时间,表明胚胎中的外在因子可能通过计时器调节分段时钟。总的来说,我们的工作表明,嘈杂的细胞自主,固有的计时器驱动了波模式下的振荡放缓和停止,而胚胎中的外部因素则在该计时器的持续时间和精确度中。这是对驱动发育中组织模式的细胞中性和 - 超级机制平衡的新见解。
摘要:应用于2D立面图像的深度学习语义分割技术在几个领域中具有巨大的希望,这些域远远超出了模型的生成,主要是如果所使用的数据是前平行的或正顺序的照片。但是,在建筑遗产领域中的有效应用尚未得到充分探索,这主要是由于缺乏多学科团队,这些团队早在数据集创建阶段就包括建筑专业人员。这项研究的目的是引入整体观点,以证明最先进的细分模型的实际实用性,以自动化城市规模住宅建筑物立面康复的高级成本估计,并在结合使用连接的组件分析时自动化。为了实现这一目标,以五个简单的阶段制定了可扩展的自下而上方法,其中包括数据科学和体系结构专业知识。该策略旨在提高早期阶段分析的准确性,并在有限的构造信息可用,并且存在很大的成本不确定性,因此可以优化参与经济可行性研究和决策过程的建筑利益相关者使用的策略。
Sanjay Aneja 15, Syed Muhammad Anwar 16, Timothy Bergquist 17, Veronica Chiang 18, Verena Chung 13, Gian Marco Conte 17, Farouk Dako 19, James Eddy 13, Ivan Ezhov 20, Nastaran Khalili 21, Keyvan Farahani 22, Juan Eugenio Iglesias 23, Zhifan Jiang 24, Elaine Johanson 25, Anahita Fathi Kazerooni 21,26,27, Florian Kofler 28, Kiril Krantchev 2,,,, Dominic LaBella 29, Koen Van Leemput 30、α Hongwei Bran Li 23、α Marius George Linguraru 16,31、α Xinyang Liu 24、α Zeke Meier 32、α Bjoern H Menze 33、α Harrison Moy 2、α、β、ϵ Klara Osenberg 2、α、β Marie Piraud 34、α Zachary Reitman 29、α Russell Takeshi Shinohara 35、α Chunhao Wang 29、α Benedikt Wiestler 28、α Walter Wiggins 36、α Umber Shafique 37、α、η Klara Willms 2、β
摘要 — 医学图像处理极大地改变了医疗保健的格局,特别是在各种疾病的诊断和治疗方面。胃肠道 (GI) 癌症已成为一个快速增长的问题,估计每年报告的新病例有 500 万例。为了达到这种精度,医疗保健专业人员现在利用尖端的磁共振成像 (MRI) 模式,即 MR-Linacs,它可以提供肿瘤位置的每日视图。然而,这一过程中的一个瓶颈出现在从获得的医学图像中手动分割处于危险中的健康器官(如胃和肠)的过程中。这项由放射科医生执行的任务非常耗时,可能会大大延长治疗时间,从而加剧患者的痛苦。因此,胃肠道分割的自动化可以无缝地帮助肿瘤学家。我们的研究提出了一种自动分割胃肠道的模型。本研究提出了一个 U-Net 模型,可以从 MRI 扫描中分割胃和肠。该数据集来自威斯康星大学麦迪逊分校卡博内癌症中心,包含用于训练注释的 RLE 编码掩码以及 16 位灰度 PNG 图像。每个病例包含多个扫描切片,按时间或整个病例分割。我们的方法使用了 U-Net 上的各种损失函数组合来提高胃肠道自动分割的准确性和效率。与其他损失函数相比,我们的模型使用 Dice+BCE 损失函数实现了较高的准确性。在训练数据集上,采用 Dice+BCE 损失函数的 U-Net 模型获得了最高的骰子分数 0.9082 和 IOU 分数 0.8594。在验证数据集上,该模型的骰子分数为 0.8974,交并比 (IoU) 分数为 0.8181。这项研究有助于解决与手动胃肠道分割相关的挑战,通过使用深度学习技术进行自动分割提供了可行的解决方案。关键词 — 磁共振成像 (MRI)、组合损失函数、U-Net、威斯康星大学麦迪逊分校 Carbone 癌症中心、胃肠道分割
此版本是根据出版商政策提供的。请参阅 http://orca.cf.ac.uk/policies.html 了解使用政策。所发布出版物的版权和道德权利
我们正在举办一项机器学习竞赛,以吸引专注于开发用于识别Cero-Electon层析成像(Cryoet)获得的粒子位置的研究人员。冰冻是一种可视蛋白质组学的强大技术,可以在分子水平上详细探索生物系统。然而,它在大规模实验中的应用受到低吞吐量的约束,特别是在识别蛋白质的3D坐标或断层图内的大分子复合物的3D坐标 - 对于实现近特征图平均的接近原子分辨率至关重要。这一识别粒子位置的步骤称为粒子拾取,这是鉴定和标记断层图中各个颗粒的过程。我们的竞争重点是支持模型开发和评估冷冻数据中的粒子采摘,重点是识别实验数据中多种粒子类型的不同粒子。
摘要:胶质瘤脑肿瘤具有与其他肿瘤相似的纹理模式,因此检测和分割胶质瘤脑肿瘤是一项具有挑战性的过程。本研究提出了一种改进的肿瘤检测系统 (MTDS) 方法来从健康脑图像中识别和分类胶质瘤脑图像。空间 Gabor 变换 (SGT)、特征计算和深度学习结构构成了建议的 MTDS 技术的训练工作流程。从胶质瘤脑图像数据集图像和正常脑图像数据集图像计算特征,并将这些特征输入到分类架构中。在本文中,提出的 IVGG 架构源自现有的视觉几何组 (VGG) 架构,以提高所提系统的检测率并降低计算时间复杂度。所提系统的测试工作流程还包括 SGT、特征计算和 IVGG 架构,以产生将源脑图像分类为正常或胶质瘤的结果。此外,形态分割技术已用于查找此胶质瘤图像中的肿瘤位置。本研究使用了两个独立的脑成像数据集来评估和验证建议的 MTDS 的性能效率。数据集是 BRATS Imaging 2020 (BI20) 和 Kaggle Brain Imaging (KBI)。已经根据 Jaccard 指数、召回率、准确率和检测率对性能效率进行了分析。
对环绕声的语义的空间理解是自动驾驶汽车需要安全驾驶决策所需的关键能力。最近,纯粹基于视觉的解决方案已增强了研究的兴趣。在特定的方法中,从多个摄像机中提取鸟类视图(BEV)的方法表现出了很好的空间理解性能。本文介绍了学习的位置编码的依赖性,以将基于变压器的甲基化的图像和BEV特征映射元素关联。我们提出利用外两极的几何约束,以模拟相机注意场与BEV之间的关系。它们被纳入注意机制中,作为一种新的归因术语,是学习位置编码的替代方案。实验表明,与隐式学习摄像机配置相比,我们的方法的大鹰队以2%MIOU的方式优于2%MIOU的BEV方法,并且具有出色的概括能力。
在大流行时,细胞因子水平升高(尤其是IL-6,GM-CSF,TNF,IFNS和IL-18),通常在严重疾病的COVID-19患者中报告。这些细胞因子通常被描绘成对促进病毒疾病的SARS-COV-2反应失调的一部分。然而,差的患者结局与持续的病毒滴度和影响血管健康的健康状况密切相关。从未有过,皮质类固醇在管理Se-Vere Covid-19中的功效支持了这样一种观念,即免疫组合有助于疾病的严重性。IL-6水平升高与包括败血症1的多种炎症状态有关。 此外,IL-6封锁已用于管理某些癌症患者的CAR T细胞治疗后的细胞因子释放综合症2。 因此,如果住院的COVID-19患者中的IL-6封锁会减轻IL-6介导的病理学,减少全身性炎症并改善患者预后3,4,则进行临床试验以确定IL-6封锁是否会减轻IL-6封锁。 然而,尽管IL-6在Covid-19中经常被描述为促炎性细胞因子,但该描述在健康和疾病中脱离了IL-6的更广泛特性1。 IL-6在促进对不同病原体的耐药性方面具有重要作用,但也维持组织稳态1。 因此,尚不清楚IL-6在COVID-19中的主要作用是否是对病毒遏制或有助于局部免疫病理学和全身并发症1-4。IL-6水平升高与包括败血症1的多种炎症状态有关。此外,IL-6封锁已用于管理某些癌症患者的CAR T细胞治疗后的细胞因子释放综合症2。因此,如果住院的COVID-19患者中的IL-6封锁会减轻IL-6介导的病理学,减少全身性炎症并改善患者预后3,4,则进行临床试验以确定IL-6封锁是否会减轻IL-6封锁。然而,尽管IL-6在Covid-19中经常被描述为促炎性细胞因子,但该描述在健康和疾病中脱离了IL-6的更广泛特性1。IL-6在促进对不同病原体的耐药性方面具有重要作用,但也维持组织稳态1。因此,尚不清楚IL-6在COVID-19中的主要作用是否是对病毒遏制或有助于局部免疫病理学和全身并发症1-4。
阿尔茨海默病 (AD) 是一种退行性且最终致命的脑部疾病,目前尚无治愈方法。这种神经系统疾病病因复杂,会导致痴呆和认知能力下降,由于脑部 MRI 图像存在差异,包括大小、形状和脑脊液流量的差异,因此很难识别。虽然 AD 没有治疗方法,但通过早期诊断可以减缓其进展。许多研究人员已经采用基于图像处理的技术,根据脑部图像区分正常患者和 AD 患者。然而,大脑的各个区域通常看起来非常相似,因此很难精确定位特定区域,而且在提取精确区域时总会存在一些不确定性。文献中提出了各种模糊 c 均值和直觉模糊 c 均值 (IFCM) 方法来处理这种模糊性和不确定性。相比之下,毕达哥拉斯模糊集 (PFS) 提供了一种更精确的验证成员资格的方法,使其成为管理不确定性的有效工具。作者分析了 PFS,并应用模糊 c 均值提出了毕达哥拉斯模糊 c 均值 (PFCM)。此外,还使用了基于直方图的初始质心来避免许多聚类算法中常见的局部最小值问题。由于结合了初始质心和基于 PFS 的聚类,所提出的聚类算法表现出了更好的性能,在不到 1.5 秒的时间内完成执行。所提出的方法在检测脑组织时实现了高准确率:白质 (WM) 为 98.64%,灰质 (GM) 为 97.4%,脑脊液 (CSF) 为 98.14%。