R。Alpharo 1,C。Alvarez 2,J。C. Art 3,D。Avila Royals Cup 6 6,A。Carramañana7,St。Casanova8,U.Cotsi 3,J.Cotsomi 9,St.Leon 10,E Hernandez 7,E Hernandez 7,B.L.Dingus 14,B.L.Dingus 14,M。A。Duvernois 10,K。Duvernois 10,K。Endel 15,K。Ergina 5,C。escino 5,t.10,k。escino,c。esc. esc. c。esc。A. Gonzalez Garcia 16,F。Garf 6,M。M. Conccert 6,J。 A. Goodman 15,St.Groetsch 17,J。P。Hüntemeyer17,St.Kaufmann 18,D。Kieda25,W。Lee6 6 6 6 19,H。LeóVargas1,J。T。Linnemann J. Martin-Castro 20,J。J. J. A. Matthews 21,P。Miranda-Romagno 22,J。 A. Monttes 6,E。一起9,M。Mostafaá27,M。Najafi 17,L。Nellen 23,M。U. Nice 5,L。Olivera 12,N。Omodei 13,C。D. Rho 24,D。Rosary 7,H。Salazar 9,H。Salazar 9,D。Salazar-Gallo 5,D。Salazar-Gallo 5,A。Sandaval 1,M.Shandaval 1,M.Sm. Smith 1,J。 声音19,R。W。Springer 25,Wang 17,Z. Wang 15,I。J。Watson 19,E。Willox15,S。A. Gonzalez Garcia 16,F。Garf 6,M。M. Conccert 6,J。A. Goodman 15,St.Groetsch 17,J。P。Hüntemeyer17,St.Kaufmann 18,D。Kieda25,W。Lee6 6 6 6 19,H。LeóVargas1,J。T。Linnemann J. Martin-Castro 20,J。J. J.A. Goodman 15,St.Groetsch 17,J。P。Hüntemeyer17,St.Kaufmann 18,D。Kieda25,W。Lee6 6 6 6 19,H。LeóVargas1,J。T。Linnemann J. Martin-Castro 20,J。J.A. Matthews 21,P。Miranda-Romagno 22,J。 A. Monttes 6,E。一起9,M。Mostafaá27,M。Najafi 17,L。Nellen 23,M。U. Nice 5,L。Olivera 12,N。Omodei 13,C。D. Rho 24,D。Rosary 7,H。Salazar 9,H。Salazar 9,D。Salazar-Gallo 5,D。Salazar-Gallo 5,A。Sandaval 1,M.Shandaval 1,M.Sm. Smith 1,J。 声音19,R。W。Springer 25,Wang 17,Z. Wang 15,I。J。Watson 19,E。Willox15,S。A. Matthews 21,P。Miranda-Romagno 22,J。A. Monttes 6,E。一起9,M。Mostafaá27,M。Najafi 17,L。Nellen 23,M。U. Nice 5,L。Olivera 12,N。Omodei 13,C。D. Rho 24,D。Rosary 7,H。Salazar 9,H。Salazar 9,D。Salazar-Gallo 5,D。Salazar-Gallo 5,A。Sandaval 1,M.Shandaval 1,M.Sm. Smith 1,J。声音19,R。W。Springer 25,Wang 17,Z. Wang 15,I。J。Watson 19,E。Willox15,S。
摘要候选PEVATRON MGRO J1908 + 06,显示了超过100 tev的硬光谱,是银河平面中最特殊的射线源之一。其复杂的形态和一些可能与非常高的能量(VHE)发射区域相关的可能对应物,无法区分-Ray发射的辐射性和缓慢性。在本文中,我们说明了MGRO J1908 + 06的新的多波长分析,目的是阐明其性质及其超高能量发射的起源。我们对12个CO和13 CO分子线发射进行了分析,证明存在与源区域空间相关的密集分子云的存在。我们还分析了10 GEV和1 tev nding具有硬光谱的对应物之间的12年fermi -large区域望远镜(LAT)数据(1.6)。我们对XMM – Newton数据的重新分析使我们能够对此来源对X射线UX进行更严格的约束。我们证明,一个加速器无法解释整个多波长度数据集,无论它是加速质子还是电子,但是需要一个两区模型来解释MGRO J1908 + 06。VHE发射似乎很可能是由PSR J1907 + 0602在南部地区提供的TEV脉冲星风星云,以及北部地区的Supernova Remnant G40.5 0.5与分子云之间的相互作用。
上下文。高度不饱和的碳链,包括波利尼斯。随着金牛座分子云-1(TMC-1)的Quijote调查的成功,该社区在检测到的碳链数量中看到了“繁荣”。另一方面,罗塞塔(Rosetta)任务揭示了完全饱和的碳氢化合物,C 3 H 8,C 4 H 10,C 5 H 12,(在特定条件下)C 6 H 14与C 7 H 16的C 6 H 14,从Comet 67p/Churyumov-Gerasimenko中。后两者的检测归因于尘埃泛滥的事件。同样,Hayabusa2 Mission从小行星Ryugu返回的样品的分析表明,Ryugu有机物中存在长期饱和脂肪族链。目标。在类似于分子云的条件下,不饱和碳链的表面化学性质可以在这些独立观察结果之间提供可观的联系。但是,仍缺乏基于实验室的研究来验证这种化学反应。在本研究中,我们的目标是通过在10 K.方法下超高真空条件下的C 2 N H 2(N> 1)Polyynes的表面氢化来验证完全饱和的烃的形成。我们进行了两步实验技术。首先,紫外线(≥121nm)辐照C 2 H 2冰的薄层,以将C 2 H 2的部分转化为较大的Polyynes:C 4 H 2和C 6 H 2。之后,将获得的光处理冰暴露于H原子中,以验证各种饱和烃的形成。结果。除了先前研究的C 2 H 6外,我们的研究证实了较大的烷烃的形成,包括C 4 H 10和(暂时)C 6 H 14。对获得的动力学数据的定性分析表明,鉴于表面温度为10 K,HCCH和HCCCCH三键的氢化以可比的速率进行。这可能发生在乌云阶段的典型时间表上。还提出了通过N-和O-O-bearenty Polyynes的表面氢化形成其他各种脂肪族有机化合物的一般途径。我们还讨论了天文学的含义以及与JWST鉴定烷烃的可能性。
摘要 超新星的反馈通常被认为是限制恒星形成、从星系中移除气体的重要过程,因此也是星系形成的决定性过程。在这里,我们报告了数值模拟,研究了超新星爆炸与新生分子云之间的相互作用。我们还考虑了有和没有来自大质量恒星的先前反馈(以电离辐射和恒星风的形式)的情况。超新星能够找到云中的弱点并创建可以逃逸的通道,从而使大部分受到良好保护的云基本不受影响。当通道由于先前恒星反馈的影响而预先存在时,这种影响会增强。膨胀的超新星将其能量沉积在这些暴露通道中的气体中,因此当反馈已经发生时,扫过的质量更少,从而导致流出速度更快,辐射损失更少。超新星爆炸的全部影响随后能够影响其所在星系的更大尺度。我们得出结论,超新星爆炸对其致密的诞生环境仅产生中等影响,但是在先前存在的反馈作用下,超新星的能量效应能够逃逸并影响星系中更广泛尺度的介质。
上下文。詹姆斯·韦伯(James Webb)太空望远镜(JWST)捕获了有史以来最清晰的红外图像,这是一个原型中等辐照的光子主导区域(PDR),它完全代表了大多数UV-rumumination-the Milecular Soleculin ass the Milecular速度和星星形成的星座。目标。我们研究了一个巨大的恒星在分子云边缘发出的远 - 硫酸酯(FUV)辐射的影响,就光蒸发,电离,解离,H 2激发和粉尘加热而言。我们还旨在限制PDR边缘的结构及其照明条件。方法。我们使用Nircam和Miri获得了17个宽带和6个窄带地图,在宽光谱范围为0.7至28 µm。我们绘制了灰尘发射,包括芳香和脂肪族红外(IR)带,散射光和几个气相线(例如,Paα,Brα,H 2 1-0 S(1)在2.12 µm时)。为了进行分析,我们还将1.1和1.6 µm的两个HST-WFC3图与HS-Stis光谱观测到Hα线相关联。结果。我们以0.1至1''的角度分辨率探测了马头边缘的结构,并解决了其空间复杂性(相当于2×10-4至2×10 - 3 PC或40至400 au,在400 pc的距离处)。我们检测到一个微弱的横纹特征网络,该网络垂直于PDR前面延伸至Nircam的H II区域,Miri和Miri对纳米谷物发射敏感的过滤器以及1.1 µm的HST滤波器中的敏感,从而散布于较大的晶粒散布的光线。这确实可能是第一次检测到蒸发流中灰尘颗粒的夹带。在PDR的照明边缘,H 2的1-0 s(1)线的丝状结构在尺度上呈现出众多尖锐的子结构。与尘埃发射相比,沿边缘沿狭窄的层(宽度约为1'',对应于2×10 - 3 pc或400 au),与灰尘发射相比,H 2发射过量。电离正面和解离前在PDR的外边缘后面出现在距离1-2'',并且似乎在空间上重合,表明中性原子层的厚度很小(低于100 au)。所有宽带图都呈现出照明边缘和内部区域之间的颜色变化。在与天空平面相比,照亮的星σ-orionis略有倾斜的情况下,这可以通过灰尘衰减来解释,从而使马头以倾斜的角度从后面照亮。与Hα,PAα和BRα线中测得的排放的预测偏差也表明灰尘衰减。使用非常简单的模型,我们使用数据来得出灭绝曲线的主要光谱特征。在3 µm处的灭绝少量可能归因于在密集区域形成的晶粒上冰冷的H 2 O层。我们还将衰减曲线从PDR衍生为0.7至25 µm。在跨越马头内部区域的所有视线中,尤其是在IR峰位置周围,在JWST的整个光谱范围内,灰尘衰减似乎不可忽略。
a b s t r a c t在冷的,深色的星际云条件下研究了两个密切相关的氰化物CH 3 [CN/NC]和H 2 C [CN/NC]的密切相关的异构体对。与空间中甲基氰化物(CH 3 CN)的不同检测相反,以前仅在温暖和热的恒星形成区域中观察到甲基异氰化物(CH 3 NC)。我们使用绿色银行望远镜的检测显着性约为13.4σ,报告了冷前核金牛座分子云(TMC-1)中CH 3 NC的检测。在H 2 CCN中的过度过渡和Ch 3 Cn和Ch 3 Nc中的四极相互作用与绿色库望远镜观测到的光谱线相匹配:狩猎芳香族分子的绿色储物望远镜上的大型项目捕食大型项目,导致了与1的含量相对于1的水。92 + 0。13-0。07×10 - 9对于氰基甲基自由基(H 2 CCN),5。02 + 3。08-2。06×10 - 10- 10-3 CN和2。 97 + 2。 10 - 1。 37×10-11 ch 3 nc。 在TMC-1条件下,在CH 3 CN和CH 3 NC的TMC-1条件下,将这些分子与三相气体密码Nautilus建模的努力,尽管在这些物种的观察值和模型之间,约5.9%的比率是一致的。 这可能指出模型中缺少破坏路线。 模型捕获了H 2 CCN的较大丰度。 解离重组被认为是这些分子的主要生产途径,并且发现具有丰富离子的反应是主要破坏途径。06×10 - 10- 10-3 CN和2。97 + 2。 10 - 1。 37×10-11 ch 3 nc。 在TMC-1条件下,在CH 3 CN和CH 3 NC的TMC-1条件下,将这些分子与三相气体密码Nautilus建模的努力,尽管在这些物种的观察值和模型之间,约5.9%的比率是一致的。 这可能指出模型中缺少破坏路线。 模型捕获了H 2 CCN的较大丰度。 解离重组被认为是这些分子的主要生产途径,并且发现具有丰富离子的反应是主要破坏途径。97 + 2。10 - 1。37×10-11 ch 3 nc。 在TMC-1条件下,在CH 3 CN和CH 3 NC的TMC-1条件下,将这些分子与三相气体密码Nautilus建模的努力,尽管在这些物种的观察值和模型之间,约5.9%的比率是一致的。 这可能指出模型中缺少破坏路线。 模型捕获了H 2 CCN的较大丰度。 解离重组被认为是这些分子的主要生产途径,并且发现具有丰富离子的反应是主要破坏途径。37×10-11 ch 3 nc。在TMC-1条件下,在CH 3 CN和CH 3 NC的TMC-1条件下,将这些分子与三相气体密码Nautilus建模的努力,尽管在这些物种的观察值和模型之间,约5.9%的比率是一致的。这可能指出模型中缺少破坏路线。模型捕获了H 2 CCN的较大丰度。解离重组被认为是这些分子的主要生产途径,并且发现具有丰富离子的反应是主要破坏途径。H + CH 3 NC以过渡状态理论为潜在的破坏途径进行了研究,但发现在冷云条件下太慢,无法解释CH 3 NC的建模和观察到的差异。
上下文。原月经磁盘由于角动量保护而在其母体分子云周围形成新生恒星。随着它们逐渐发展和消散,它们也形成行星。尽管许多建模效果都专门用于它们的形成,但它们的世俗进化问题,从所谓的0类嵌入阶段到II类阶段,据信被认为是隔离的II级阶段,但仍然很熟悉。目标。我们旨在探索嵌入式阶段与II类阶段之间的演变。我们着重于磁场演化以及磁盘与包膜之间的长期相互作用。方法。我们使用GPU加速IDEFIX进行3D,正常,非理想的磁性水力动力学(MHD)世俗核心崩溃模拟,该模拟涵盖了赛车前核心的系统进化,直到第一次降低了液压核心和脉冲定位后,直到100 kyr的100 kyr降低,同时又垂直地定位了垂直的垂直和垂直的效果。 au)正确解决磁盘内部动力学和非轴对称扰动。结果。磁盘的演化导致开普勒旋转中的幂律气体表面密度,该旋转延伸至几个10 au。在初始塌陷期间,磁盘被困在磁盘中的磁性弹力从磁盘形成下的100 mg降低到1 mg,到1 mg。在第一个静水压核形成后,系统分为三个阶段。结论。第一阶段,具有较小的(〜10 au),不稳定,强烈积聚(〜10-5m⊙yr -1)磁盘,在第一阶段中失去了磁性弹力,第二阶段,第二阶段,磁性磁盘通过平稳的磁盘呈圆形,并通过囊罩的速度呈粒料,并具有感知的动量,并具有感知的动量,并具有一定的感光性,并具有一定的感光性,并具有一定的固定磁盘。 Au磁盘在几个10-7 m⊙yr -1处积聚。 初始各向同性包膜最终会进食大规模扩展的吸积流液,其吸积速与原恒星相似(〜10-6 m yr-1)。 一些流媒体材料与磁盘的外边缘碰撞并产生吸积冲击,但材料的一小部分土地在磁盘表面上没有产生任何明显的不连续性。 虽然初始磁盘尺寸和磁化是通过磁制动设定的,但自我实现最终会驱动吸积,因此磁盘最终以重力调节状态。 这种从磁制动到自我重力的演变是由于磁盘沉降后气体和磁场之间的弱耦合所致。 在I类阶段末端(B z〜1 mg)的弱磁场是磁盘中磁性频率稀释的结果,因为它从其初始相对较小的尺寸膨胀。 这种膨胀不应将其解释为粘性膨胀,因为它是由具有较大特定角度动量的大规模彩流人的新吸收材料驱动的。第一阶段,具有较小的(〜10 au),不稳定,强烈积聚(〜10-5m⊙yr -1)磁盘,在第一阶段中失去了磁性弹力,第二阶段,第二阶段,磁性磁盘通过平稳的磁盘呈圆形,并通过囊罩的速度呈粒料,并具有感知的动量,并具有感知的动量,并具有一定的感光性,并具有一定的感光性,并具有一定的固定磁盘。 Au磁盘在几个10-7 m⊙yr -1处积聚。初始各向同性包膜最终会进食大规模扩展的吸积流液,其吸积速与原恒星相似(〜10-6 m yr-1)。一些流媒体材料与磁盘的外边缘碰撞并产生吸积冲击,但材料的一小部分土地在磁盘表面上没有产生任何明显的不连续性。虽然初始磁盘尺寸和磁化是通过磁制动设定的,但自我实现最终会驱动吸积,因此磁盘最终以重力调节状态。这种从磁制动到自我重力的演变是由于磁盘沉降后气体和磁场之间的弱耦合所致。在I类阶段末端(B z〜1 mg)的弱磁场是磁盘中磁性频率稀释的结果,因为它从其初始相对较小的尺寸膨胀。这种膨胀不应将其解释为粘性膨胀,因为它是由具有较大特定角度动量的大规模彩流人的新吸收材料驱动的。