A. flavus-oryzae组包括对某些东方食品和酶产生的重要霉菌。分生孢子会给孢子头提供各种黄色至绿色的阴影,并可能形成深色的硬化。nicrium:这是另一个属,在食品中广泛存在且重要。该属分为组和亚组,并且有许多物种。根据孢子头的分支或青霉素(小刷子),将属分为大组。这些头部或verticillata是三个或多个元素的螺旋或簇:sterigmata,metulae(子分支)和分支。P。膨胀,蓝绿色的模具会导致水果的软腐烂。其他重要的物种是Digitatum,带有橄榄或黄绿色的分生孢子,导致柑橘类水果的腐烂; P. Italicum,称为“蓝色接触型”,带有蓝色绿色分生孢子,也称为腐烂的柑橘类水果;
1植物保护,科学技术实验室,农业学院,金代大学,奈良631-8505,日本; walk011kimu_ax000@icloud.com(y.k。); mano0823kaa@gmail.com(K.N.); 2011410196f@nara.kindai.ac.jp(A.M。); ymatsuda@nara.kindai.ac.jp(y.m。)2植物保护研究所,农业研究中心,H-1525布达佩斯,匈牙利; nemeth.mark@atk.hu(m.z.n. ); seress.diana@atk.hu(D.S. );吻 3,Mitsui Chemicals Agro,Inc.,Yasu-Shi 520-2362,Agrogemicals Research Center,Ragrogemicals Research Center,Research&Development Division,日本; tomomi.shirakawa@mitsuichemicals.com 4植物中心,高级技术学院,金奈大学,Wakayama 642-0017,日本; takikawa@waka.kindai.ac.jp 5日本的奥卡卡大学577-8502的药物研究与技术研究所; 934097@kindai.ac.jp 6昆士兰州大学作物健康中心,昆士兰州大学,QLD 4350,澳大利亚7号农业技术与创新研究所,纳拉大学,日本NARA 631-8505电话。 : +81-742-43-5194†这些作者对这项工作也同样贡献。2植物保护研究所,农业研究中心,H-1525布达佩斯,匈牙利; nemeth.mark@atk.hu(m.z.n.); seress.diana@atk.hu(D.S.);吻3,Mitsui Chemicals Agro,Inc.,Yasu-Shi 520-2362,Agrogemicals Research Center,Ragrogemicals Research Center,Research&Development Division,日本; tomomi.shirakawa@mitsuichemicals.com 4植物中心,高级技术学院,金奈大学,Wakayama 642-0017,日本; takikawa@waka.kindai.ac.jp 5日本的奥卡卡大学577-8502的药物研究与技术研究所; 934097@kindai.ac.jp 6昆士兰州大学作物健康中心,昆士兰州大学,QLD 4350,澳大利亚7号农业技术与创新研究所,纳拉大学,日本NARA 631-8505电话。: +81-742-43-5194†这些作者对这项工作也同样贡献。
图4。AFUPMV-1M感染的A. fumigatus的蛋白质组改变了。在生理和氧化应激条件下,使用质谱法(MS)表征了Fumigatus AF293和环己酰亚胺病毒(VC)的蛋白质含量。a。通过其存在/不存在鉴定蛋白的分布。只有每组3个三分之一(n = 3)中出现的蛋白质出现在最终列表中。b。通过方差分析(ANOVA)的未校正值<0.05(ANOVA),总共有117种蛋白质在菌株和生长条件下具有差异性丰富。c。在对照条件下以及通过QRT-PCR分析的对照条件下以及氧化挑战(5 mM H 2 O 2,4H)下,AF293与VC和RI的相对mRNA水平。分析的基因:BRF1,pol III transcranced Genes:U6 snRNA(U6),tRNA-arg(arg),tRNA-phe(phe)和tRNA-phe(phe)和tRNA-tyr(tyr),pol i-pol i-transciped procyclin(proc)。数据是平均 + s.e.m.,n = 3。** = 0.0085,*** = 0.0002,**** <0.0001。d。通过QRT-PCR分析,AF293与VC和RI的相对MIS6水平相对于VC和RI(5 mM H 2 O 2,4H)。数据是平均 + s.e.m,n = 3。e。 5天后,在使用10 mM羟基脲的固体GMM培养基上抑制生长。gmm用作对照。f-g。有丝分裂测定。分生孢子5小时,然后在指定的时间段内在YG培养基中再次洗涤并再次孵育。**** <0.0001。通过Hoechst染色和光学显微镜评估每个分生孢子(F)和分生孢子直径(G)中核的数量(每次重复计数50种生殖,这是三个独立实验±SD的平均值)。分生孢子悬浮液,以说明每个实验之前的分生孢子生存力差异。
摘要。木霉菌属成员能够适应各种生境,包括有机废物,具有相当高的种群密度。本研究旨在确定从 Rempoah 综合废物处理设施 (TPST)、Banyumas 摄政区 Baturraden 区分离的木霉菌的形态特征差异。实验在 Jenderal Soedirman 大学生物学院真菌学和植物病理学实验室进行。对木霉菌属的探索结果获得了三个分离株。观察到的特征是宏观特征,包括菌落的颜色和形状,以及微观特征,包括分生孢子梗、瓶梗和分生孢子的形状。结果表明,从 Rempoah TPST 分离的三个木霉菌具有不同的形态特征。获得的木霉菌种为 T. koningii、T. asperellum 和 T. harzianum。
在建筑物外发现的大气中的空气称为外部空气。外部空气的主要菌群是真菌。真菌的两个常见属是孢子菌素。除了这两个属外,在Airare aspergillusand,externaria,phytophthora ysipheer中发现了其他属。室内空气还包含大孢子,酵母菌的腹腔,菌丝体的碎片和霉菌的分生孢子。微生物的数量和种类可能会因人口密度而异。
摘要:镰刀菌疫病(FHB)和镰刀冠腐烂(FCR)由咪唑杀真菌剂的应用管理,如欧洲绿色交易所述,这些杀菌剂将在2030年受到严格限制。在这里,通过遵循循环经济的原理,提出了一种新颖和生态可持续的纳米结构颗粒制剂(NPF)。纤维素纳米晶体(CNC)和抗性淀粉是从高淀粉(HA)面包小麦的麸皮中获得的,并用作载体和赋形剂,而壳聚糖和长石酸则作为抗真菌和抗真菌和INICITOTITRITITITOR主动原理功能化。NPF抑制了分生孢子发芽和菌丝体的生长,并与分生孢子机械相互作用。NPF在易感面包小麦基因型中最佳降低了FHB和FCR症状,同时在植物上具有生物相容性。The expression level of 21 genes involved in the induction of innate immunity was investigated in Sumai3 (FHB resistant) Cadenza (susceptible) and Cadenza SBEIIa (a mutant characterized by high-amylose starch content) and most of them were up-regulated in Cadenza SBEIIa spikes treated with the NPF, indicating that this genotype may possess an interesting genomic background particularly对诱导剂样分子的反应。量化表明NPF控制的FHB扩散,而Cadenza Sbeiia对FCR真菌扩散具有抗性。目前的研究工作强调,NPF是FHB可持续管理的强大武器,而Cadenza Sbeiia的基因组应深入研究,因为对类似Esicor的分子和对FCR真菌差的耐药性特别敏感。
摘要:在2023年和2024年8月的甜橙树上观察到叶子和水果的坏死斑。严重影响的叶子和水果表现出过早的下降。病原体是从这些斑点中分离出来的,并检查了其形态特征。在马铃薯葡萄糖琼脂(PDA)上培养的真菌菌落表现出灰黑菌丝体,分生孢子在带有横向和纵向隔sepa的链中排列,导致病原体将病原体鉴定为Alternaria替代品。内部转录的间隔物(ITS)和翻译伸长因子1-alpha(Tef-1alpha)区域的分子分析,真菌分离株进一步证实了其作为替代品的身份。通过分离的叶测定技术验证了选定分离株的致病性。据我们所知,这代表了Tirupati地区的第一个造成叶面和水果斑以及枯萎病的A.替代案例。
抽象的昆虫病作用真菌(EPF)可以定义为有益的多功能真核生物微生物,在害虫管理中显示关键的生态服务,其中一些物种具有与植物建立相互关系的特殊能力。这些真菌的大规模生产对于支持负担得起的广泛商业化和全球现场应用至关重要。在主要由行业探索的大规模生产方法中,淹没的液体发酵是一种强大而多才多艺的技术,允许形成为害虫控制中各种应用指定的不同类型的繁殖物。通过产生单细胞结构(菌丝体,胚孢子和淹没的分生孢子)或多细胞结构(菌丝体和微植物),许多虚伪的EPF很容易在人工底物上进行培养。少于某些EPF可能会形成具有环保的衣原体,但这些结构几乎总是被忽略。A continued research pipeline encompassing screening fungal strains, media optimization, and proper formulation tech- niques aligned with the understanding of molecular cues involved in the formation and storage stability of these propagules is imperative to unlock the full potential and to fine-tune the development of robust and effective biocontrol agents against arthropod pests and vectors of diseases.最后,我们设想了淹没的液体发酵技术的光明未来,以补充或替换传统的固体底物发酵方法,以大量生产许多重要的EPF。
Ceratocystis manginecans 可导致芒果枯萎病,造成重大的经济损失。在感染过程中,角铂素 (CP) 家族蛋白 (CPPs) 被认为参与致病机制,但在 C. manginecans 中尚未确定。为了证实此功能,本研究对 C. manginecans 的 CP 蛋白 (CmCP) 进行了表征。通过用崩溃酶和裂解酶处理 C. manginecans 菌丝体来制备其原生质体。在含有 60% PEG 和 50 µ g/mL 潮霉素 B 的培养基中使用 CRISPR/Cas-U6-1 表达载体编辑 cmcp 基因,得到 cmcp 缺失的突变体 (1 cmcp)。通过将 cmcp 转化为 1 cmcp 获得补充突变体 (1 cmcp -C)。通过与野生型菌株进行比较,对 1 cmcp 和 1 cmcp -C 的形态、菌丝生长、分生孢子产生和致病性进行了表征。此外,cmcp 在毕赤酵母中转化和表达,获得的重组蛋白 CmCP 导致烟草叶片严重坏死。经 CmCP 处理的植物叶片表现出过敏反应症状,包括电解质渗漏、活性氧产生以及防御相关基因 PR-1 、 PAD3 、 ERF1 、 HSR203J 和 HIN1 的过度表达。所有这些结果都表明 cmcp 基因是 C. manginecans 生长发育所必需的,并且是芒果感染的主要致病因子。
摘要 疣状瓶霉菌可引起多种人类真菌疾病,主要是极难治疗的着色芽生菌病。多项研究表明,人类免疫缺陷病毒肽酶抑制剂 (HIV-PI) 是抗真菌疗法的有吸引力的候选药物。这项工作重点研究了 HIV-PI 对疣状瓶霉菌分泌的肽酶活性的作用及其对真菌增殖和巨噬细胞相互作用的影响。我们从疣状瓶霉菌中检测到了一种能够裂解白蛋白的肽酶活性,对胃酶抑素 A 和 HIV-PI(尤其是洛匹那韦、利托那韦和安普那韦)敏感,首次表明这种真菌分泌天冬氨酸型肽酶。此外,洛匹那韦、利托那韦和奈非那韦抑制了真菌的生长,导致超微结构发生显著改变。洛匹那韦和利托那韦还影响分生孢子-巨噬细胞粘附和巨噬细胞杀灭。有趣的是,利托那韦与伊曲康唑或酮康唑联合使用可抑制疣状假单胞菌的生长。总之,我们的研究结果支持 HIV-PI 的抗真菌作用及其作为真菌感染的潜在替代疗法的相关性。