图。1。示例能量谱,代表直接驱动DT低温实验的产物,其离子温度为2 keV,而面积的密度为100 mg/cm 2。sev-sev-sev-sup子在冷DT燃料中经历散射或参与分解反应n(d,p)2n,均以面积密度的优势。通过使用中子传输代码iris3d 9来生成这种能量谱,以使中子光谱用于球形和对称分布的冷燃料层,该频率围绕球形,体积分布的中子源。
多糖是由几种单糖结合而成的,其中最为人所知的是纤维素、淀粉和糖原,它们具有最重要的生物学意义。它们由长链形成,可以包含氮或硫分子。它们不溶于水。这一组碳水化合物由不像其他组那样具有甜味的分子组成。与其他碳水化合物相比,多糖的分子非常大,因此被认为是大分子。多糖不溶于水这一事实对生物体非常重要,因为它们可以发挥结构和能量储存功能。例如,几丁质是真菌细胞壁和节肢动物外骨骼的组成部分。如果它是可溶的,这些动物就无法接触水,因为它们的整个骨骼都会变软。在消化过程中,为了使这些分子被吸收,它们需要被分解成更小的分子,即单糖。分解反应通过水解发生。请注意,两个单糖之间的结合反应是通过逆过程即脱水反应发生的。多糖分子是聚合物(大分子),也就是说,组成它们的分子是相同或相似的。这些单元被称为单体。
摘要:锌离子电池(ZIBS)由于其出色的安全性,低运营成本和环境优势而获得了非常有前途的可充电电池的认可。尽管如此,与水解物相关的固有挑战(包括水分解反应,蒸发和液体泄漏),固定的挑战阻碍了Zibs储能的广泛利用。幸运的是,固态电解质研究的最新进展在解决这些挑战方面具有巨大的潜力。此外,固态电解质的灵活性和新化学性质为其在可穿戴电子设备和多功能设置中的应用提供了更多机会。尽管如此,尽管近年来基于固态电解质的齐布斯的流行日益普及,但固态电解质的发展仍处于早期阶段。弥合存在的巨大差距在固态Zib成为实际现实之前至关重要。本评论介绍了各种类型的ZIB固态电解质的进步,包括纤维分离器,无机添加剂和有机聚合物。此外,它讨论了固态电解质的性能和影响。最后,它概述了固态Zibs开发的未来方向。
对锂离子电池提供高能和功率密度的需求,尤其是充电时间很短,可导致其稳定窗口限制的频繁操作。这会导致负载增加,材料压力,锂电镀的风险和高温,所有这些都激发了有关电池安全性的深入研究。锂离子电池最重大的安全问题是热失控,这是一系列级联的放热反应,可能导致火灾甚至爆炸性故障。[3]热失控之前是一个自加热阶段,其中来自细胞成分的分流位置的放热反应会增加温度。进行反应。[4]这需要对发生的反应进行深刻的理解。各种实验方法用于在自加热和热失控过程中获得对过程的见解,并评估总体电池安全性,例如指甲穿透,压碎和烤箱测试。[3C,5]所有这些测试通常通过各种机制提高电池的温度,例如导致机械损坏诱导短路,从而导致放热分解反应。烤箱测试允许控制调节调节,因此,对特定反应过程的研究及其与电化学行为的相关性。在某些温度和阶段,自我
摘要。至关重要的是要了解哪些电势分解反应开始以及随后形成的分解膜中存在哪些化学物质,例如固体电解质相(SEI)。在此,引入了一种新的Operando实验方法,以通过使用硬X射线光电子光谱(HAXPES)来研究此类反应。这种方法可以检查在薄金属膜下方形成的SEI(例如6 nm镍),该膜在具有硫化物的基于硫化物的LI 6 PS 5 Cl固体电解质的电化学电池中充当工作电极。电解质还原反应已经开始为1.75 V(vs。li + /li)并导致相当大的li 2 s形成,尤其是在1.5 - 1.0 V的电压范围内。观察到SEI的异质 /分层微结构(例如,优先的Li 2 O和Li 2 O和Li 2 S在当前收集器附近)。还观察到了侧反应的可逆性,因为在2-4 V电势窗口中分解了Li 2 O和Li 2 S,产生了氧化的硫种类,亚硫酸盐和硫酸盐。
Hatchard等。 将这些模型组合在一起,以模拟在过热条件下的完整细胞。 [9]该领域的新出版物[10-14]通常是指这些模型,并将其扩展以涵盖更广泛的应用程序。 这项工作的目的是为由于热失控而对蝙蝠的安全风险进行快速评估,该风险可以应用于高度灵活的电池生产,以用于各种类型,尺寸和形状的细胞。 [15]因此,在这项工作中开发了用于锂离子电池安全性评估的数值模型。 这项工作中提出的化学模型可以仔细观察热失控期间的分解反应。 这允许根据电池电池组成评估生成的热量和气体,这是有用的尺寸,例如安全通风孔和热屏障。 开发的模型侧重于热滥用条件下的完整细胞模拟。 因此,化学模型与热模拟相结合,以获得温度曲线并从模拟结果中释放总热量。 进行验证,建造了用于热滥用电池的测试钻机。 袋细胞通过以恒定的速度加热来将它们带到热失控中。 为了验证模拟框架,分析了热失控过程和相应气体释放期间温度预纤维的测量。Hatchard等。将这些模型组合在一起,以模拟在过热条件下的完整细胞。[9]该领域的新出版物[10-14]通常是指这些模型,并将其扩展以涵盖更广泛的应用程序。这项工作的目的是为由于热失控而对蝙蝠的安全风险进行快速评估,该风险可以应用于高度灵活的电池生产,以用于各种类型,尺寸和形状的细胞。[15]因此,在这项工作中开发了用于锂离子电池安全性评估的数值模型。这项工作中提出的化学模型可以仔细观察热失控期间的分解反应。这允许根据电池电池组成评估生成的热量和气体,这是有用的尺寸,例如安全通风孔和热屏障。开发的模型侧重于热滥用条件下的完整细胞模拟。因此,化学模型与热模拟相结合,以获得温度曲线并从模拟结果中释放总热量。进行验证,建造了用于热滥用电池的测试钻机。袋细胞通过以恒定的速度加热来将它们带到热失控中。为了验证模拟框架,分析了热失控过程和相应气体释放期间温度预纤维的测量。
摘要:形成稳定的电化学相互作用,包括固体电解质间相(SEI)和阴极电解质相间(CEI)对于开发高性能碱金属电池至关重要。SEI/CEI的稳定性主要取决于其化学和结构。当前对SEI/CEI设计的研究主要集中于通过调节电解质配方来调节其化学。在这项工作中,我们展示了SEI/CEI的化学和结构都可以通过温度调制的形成策略轻松调节。具体而言,使用加热条件下的预充电来调节电解质分解反应的类型和动力学,然后在低温存储下冷冻,以控制电极界面上分解产物的沉积行为。研究表明,高温预充电会影响LI+的配位结构并加速分解反应动力学,从而导致大量阴离子分解。随后的低温存储迅速降低了在高温下产生的分解产物的溶解度,从而促进了两个电极对不溶性产物的沉积,从而导致密集且稳定的SEI/CEI。强大的SEI/CEI实现了中等浓度的基于以太电解质的4.5 V LI || NCM811单元的稳定循环,
h 2 O 2在水溶液中的浓度已通过532 nm拉曼态度来确定。h 2 O 2是一种高需求的绿色氧化剂,其H 2和O 2的直接合成是传统生产过程的有前途的替代方法。拉曼光谱是针对H 2 O 2量化的快速,无损和可靠的分析技术,它避免了传统的碘测定的缺点(样品提取,制备了试剂的制备和长时间的分析)。已经设计了一个高压视图单元,以促进高压下的测量,通常在直接合成过程中发现。已经开发了一个彻底的校准模型,并在高压(5.0 MPa)和温度(最高45℃)的情况下进行了阀门。溶剂(水)用作纠正乘法扭曲的内标。分析技术的验证与经典碘化滴定相比产生了可重现和准确的结果,从而使单个校准模型用于一系列反应条件。通过在不同条件下分析H 2 O 2的分解反应,已建立了拉曼光谱对实时定量反应监测的可行使用。©2010 Elsevier B.V.保留所有权利。
光催化全水分解为氢气和氧气对于地球上长期可再生、可持续和清洁燃料生产来说是理想的。金属硫化物被认为是理想的产氢光催化剂,但它们的成分均一性和典型的硫不稳定性导致产生惰性氧,这仍然是全水分解的巨大障碍。在这里,ZnIn 2 S 4 (DO-ZIS) 的畸变引起的阳离子位点氧掺杂在 S 1 – S 2 – O 位点的局部结构中产生相邻原子位点之间显著的电负性差异,其中 S 1 位点富电子,而 S 2 位点缺电子。强的电荷重分布特性可激活 S 2 位点的稳定氧反应,避免了金属硫化物光催化中常见的硫不稳定问题,而 S 1 位点有利于氢气的吸附/解吸。因此,在 DO-ZIS 中实现了整体水分解反应,其太阳能到氢的转化效率高达 0.57%,经过 120 小时光催化测试后,保留率约为 91%。在这项工作中,我们从电负性差异的角度启发了一种通用设计,以激活和稳定金属硫化物光催化剂,实现高效的整体水分解。
用于高容量正极材料的先进纳米涂层的研究和开发是目前固态电池(SSB)领域的热门话题。保护性表面涂层可防止正极材料与固体电解质直接接触,从而抑制有害的界面分解反应。这在使用硫代磷酸锂超离子固体电解质时尤为重要,因为这些材料的电化学稳定窗口较窄,因此在电池运行过程中容易降解。本文我们表明,LiNbO 3 涂覆的富镍 LiNi x Co y Mn z O 2 正极材料的循环性能在很大程度上取决于样品历史和(涂层)合成条件。我们证明,在 350°C 的纯氧气氛中进行后处理会形成具有独特微观结构的表面层,该表面层由分布在碳酸盐基质中的 LiNbO 3 纳米颗粒组成。如果在分别以 Li 4 Ti 5 O 12 和 Li 6 PS 5 Cl 作为阳极材料和固体电解质的颗粒堆叠 SSB 全电池中以 45 °C 和 C/5 速率进行测试,则在 200 次循环后仍可保留初始比放电容量的约 80%(~ 160 mAh·g −1 ,~ 1.7 mAh·cm −2 )。我们的研究结果强调了根据电极材料定制涂层化学对于实际 SSB 应用的重要性。