在 RF 通信系统中,振荡器是提供发射器和接收器之间同步的基本组件。RF 收发器中使用的振荡器通常嵌入“合成器”环境中,以精确定义其输出频率。几十年来,合成器设计一直是一项艰巨的任务,导致了数百种 RF 合成技术的出现。基于 PLL(锁相环)的合成器通常通过闭环控制提供更好的稳定性。PLL 概念通过额外的杂散减少技术提高了合成器电路的性能。在反馈环路中使用“分频器”为合成器提供了频率选择性。在 RF IC 领域,合成器分为两大类,即“整数 N”合成器和“小数 N”合成器。本文介绍了使用 LTspice 软件中的分频器设计整数 N 合成器。
高速宽带分频器广泛应用于正交信号产生[1, 2]、时间交织THA和ADC系统[3, 4, 5]以及其他高速通信领域[6]。目前,已有多种基于不同拓扑和工艺的分频器被报道。特别地,InP DHBT在相同尺寸的器件下具有更高的击穿电压和更好的频率性能[7, 8],这意味着InP DHBT是高速分频器电路的更好选择。但是,电路的工作频率范围不能超过与器件工艺有关的截止频率ft的几分之一[9],这限制了电流型逻辑 (CML) 分频器的工作频率[9, 10]。为了提高分频器电路的高频性能,应努力提高相同ft 的器件的工作频率的利用率。已经发表了许多增强技术来扩展分频器的工作频率范围,例如电感峰值[9, 11, 12, 13],分流电阻负载[14, 15, 16],非对称锁存器[17],动态分频器[18, 19, 20, 21, 22]和双射极跟随器[23, 24]。然而,在电路设计中最大限度地利用器件ft的报道很少。本信
[分频器患者,n = 33]),发生了10次自初级分析(Liso cel Arm,n = 6; Soc Arm,n = 4 [所有分频器患者]);大多数死亡是由于疾病进展或并发症(n = 6)。安全结果为
摘要:本文介绍了一种 40 GHz 压控振荡器 (VCO) 和分频器链,采用意法半导体 28 nm 超薄体盒 (UTBB) 全耗尽绝缘体上硅 (FD-SOI) 互补金属氧化物半导体 (CMOS) 工艺制造,具有八层金属后道工艺 (BEOL) 选项。VCO 架构基于带有 p 型金属氧化物半导体 (PMOS) 交叉耦合晶体管的 LC 谐振腔。VCO 通过利用可通过单个控制位选择的两个连续频率调谐带,展现出 3.5 GHz 的调谐范围 (TR)。在 38 GHz 载波频率下测得的相位噪声 (PN) 分别为 - 94.3 和 - 118 dBc/Hz(频率偏移为 1 和 10 MHz)。高频分频器(频率从 40 GHz 到 5 GHz)采用三个静态 CMOS 电流模式逻辑 (CML) 主从 D 型触发器级制成。整个分频器因子为 2048。低频分频器采用工作频率为 5 GHz 的 CMOS 触发器架构。VCO 核心和分频器链的功耗分别为 18 和 27.8 mW(电源电压为 1.8 和 1 V)。使用热室在三个结温(即 − 40、25 和 125 ◦ C)下验证了电路的功能和性能。
变容二极管调谐 LC 振荡器与分频器一起为 AM 和 FM 前端混频器提供 LO 信号。VCO 的工作频率约为 160 MHz 至 256 MHz。在 FM 模式下,LO 频率除以 2 或 3。这些分频器生成用于 FM 前端混频器以进行镜像抑制的同相和正交相位输出信号。在天气波段模式下,LO 信号直接相移以生成同相和正交相位信号。在 AM 模式下,LO 频率除以 6、8、10、16 或 20,具体取决于所选的 AM 波段。
摘要 — 本文介绍了一种空间时间平均技术,该技术可实现瞬时小数分频,从而显著降低小数 N 锁相环 (PLL) 中的量化误差。空间平均可通过使用并行运行的分频器阵列来实现。它们的不同分频比由小数调制器 (DSM) 和动态元件匹配 (DEM) 块产生。为了降低分频器功率,本文还提出了一种仅使用一个分频器和相位选择来实现空间平均的方法。原型 2.4 GHz 小数 N PLL 采用 40 nm CMOS 工艺实现。测量结果表明,所提出的技术分别在 1 MHz 和 10 MHz 偏移处将相位噪声降低了 10 dB 和 21 dB,从而使积分均方根抖动从 9.55 ps 降低至 2.26 ps。索引术语——调制器(DSM)、数据加权平均(DWA)、动态元件匹配(DEM)、小数N分频PLL、频率合成器、相位噪声、锁相环(PLL)、量化噪声降低。
4.2.1 源 ................................................................................................................................................................................................................... 38 标准设置 .......................................................................................................................................................................................................... 39 4.2.2 扬声器 ...................................................................................................................................................................................................... 40 4.2.3 有源分频器 ............................................................................................................................................................................................. 44 4.2.4 时钟设置 ............................................................................................................................................................................................. 47 4.2.5 源路由 ............................................................................................................................................................................................. 49 4.2.6 扬声器路由 .............................................................................................................................................................................
产品特点和控制 低音炮 您的新型数字硬盘低音炮的突出特点包括: • 锥体和电机尺寸: - 10 英寸(8 英寸活塞直径)或 12 英寸(9.7 英寸活塞直径)锥体,带 310 盎司磁铁,或, - 15 英寸(12.7 英寸活塞直径)或 18 英寸(15.2 英寸活塞直径)锥体,带 380 盎司磁铁。磁铁 • 内置 1250 瓦 (RMS)、3,000 瓦峰值功率高效 D 类放大器 • 串联 3 英寸音圈 • 多层树脂层压锥体 • 高偏移橡胶环绕 • 增益压缩、防削波电路,可防止过度偏移和放大器削波 • 固定 80Hz 高通分频器(RCA 输出) • 平衡 (XLR) 输入 • 线路电平 (RCA) 输入和吞吐量 • 扬声器电平输入 • 可变音量控制 • 频率响应 20Hz - 120Hz +/-3dB • 可拆卸 6 英尺交流电源线 • 四个橡胶 1/4 --20 螺纹支撑脚(15 英寸和 18 英寸型号为带橡胶插件的铝制) • 屏幕控制: - 自动均衡器/自我均衡器 - 用于房间均衡器的图形或参数均衡器控制 - 可调(15Hz - 199Hz)低通分频器(可禁用) -多个交错低通分频器(6dB/倍频,初始到 36dB/倍频,最终) - 可调(15Hz - 35Hz)亚音速滤波器(可禁用) - 多个交错亚音速滤波器(12dB/倍频,初始到 24dB/倍频,最终) - 可变音量控制 - 可调相位控制(0° - 180°,以 15° 为增量) - 可选极性(+/-)
频率测量的理论 41 时间间隔测量 42 使用测量系统 44 计算机控制的测量系统 46 参考频率 47 分频器 48 时间间隔计数器 48 计算机 49 测量系统的输出 50 系统的日常操作 51 记录保存 53 频率测量的可追溯性 53 频率校准测量的内容 55 总结 60
频率测量的理论 41 时间间隔测量 42 使用测量系统 44 计算机控制的测量系统 46 参考频率 47 分频器 48 时间间隔计数器 48 计算机 49 测量系统的输出 50 系统的日常运行 51 记录保存 53 频率测量的可追溯性 53 频率校准测量的内容 55 总结 60