离散元法 (DEM) 是一种数值技术,用于模拟颗粒系统的行为并研究这些系统的颗粒尺度力学 1 。该方法使用显式时间积分来更新一系列时间步长中每个粒子在每个时间的位置和旋转,需要计算每个接触和每个时间步长的颗粒间接触力。接触运动和接触力之间明确、精确和稳健的关系对于 DEM 代码至关重要,迄今为止最常见的运动-力关系是线性摩擦接触。使用此模型,可以分别计算垂直于接触表面和切向的力分量。在时间 푡 + Δ 푡 时,两个粒子之间的法向(压缩)接触力 푓 n ,푡 +Δ 푡 仅仅是粒子理想轮廓的累积重叠 휁 푡 +Δ 푡 乘以法向接触刚度 푘 n 。在时间步长 Δ 푡 内发生的切向力变化 Δ 퐟 t 等于两个粒子在时间步长内的相对切向运动矢量 Δ 흃 乘以切向刚度 푘 t ,但累积切向力的大小 | 퐟 t ,푡 +Δ 푡 | 仅限于摩擦系数 휇 乘以法向力。这两个规则通常写为
高质量测量的可用性被认为是了解模型不确定性以及验证和改进气动风力涡轮机模型的最重要先决条件。然而,传统的风力涡轮机实验程序通常不能为此提供足够的信息,因为它们只测量集成的总(叶片或转子)负载。这些负载由气动和质量诱导分量组成,它们在一定的翼展长度上集成。在 80 年代末和 90 年代,人们意识到需要更直接的气动信息来改进气动建模。为此,一些研究所启动了实验计划,测量压力分布以及由此产生的不同径向位置的法向和切向力。在 IEA Wind 的支持下,许多这些测量结果被存储在任务 14 的数据库中
特点:• 高度耐用,设计用于冲击扳手,攻丝速度比传统方法快 14 倍。• 全尺寸轴可最大程度提高强度,并易于反转丝锥。• 喇叭头设计可减少切向力,从而最大程度地提高扭矩传递。• 每个丝锥头尺寸与螺栓尺寸相匹配,可实现攻丝和螺栓连接的单一工具操作。• 提高生产率 - 这些丝锥比传统手动丝锥工作速度更快,使用寿命更长。在低碳钢上测试了 100 多个孔,保持了相同的螺纹质量。• SpeedTaps TM 可轻松在狭小空间中表现出色,这些空间太小而无法使用传统丝锥扳手,使用户比旧技术更具优势。• 6 螺纹锥度,启动更快。• 60° 锥形点,易于对准。• 由 M2 工具钢制成,表面涂有硝酸盐涂层,可延长丝锥寿命。
摘要 - 电流机器人触觉对象识别依赖于从运动相互作用信号(例如力,振动或位置)得出的统计措施。可以从这些信号估算的机械性能是可能产生更强大对象表示的内在对象属性。因此,本文提出了一个使用多种代表性的机械特性的对象识别框架:刚度,粘度和摩擦系数以及恢复原状的系数,很少被用于识别对象。这些属性是使用双重卡尔曼滤波器实时估计的(无切向力量测量),然后用于对象clasinition和clustering。通过触觉探索识别20个对象的机器人,对所提出的框架进行了测试。结果证明了该技术的有效性和效率,并且所有四个机械性能都是最佳识别率为98.18±0.424%所必需的。对于对象聚类,与基于统计参数的方法相比,这些机械性能的使用也可以提高性能。
本研究采用渐进式划痕试验研究了采用直流磁控溅射制备的 Ni(25 nm)/Cu(25 nm)/Cr(25 nm) 三层薄膜的微摩擦学特性。研究并比较了四种不同类型的薄膜:沉积态薄膜、低能 Ar + 离子辐照后的薄膜、在真空中 450 °С 退火 15 分钟的薄膜以及离子辐照后真空退火的薄膜。划痕试验辅以结构 (XRD) 和化学 (AES) 实验研究。结果表明,在所有研究的薄膜中,离子辐照后退火的样品表现出最好的微摩擦学和耐磨特性。辐照后退火的样品表现出最高的抗划痕性、光滑的划痕形状、最低的峰值切向力值以及没有侧裂纹和薄膜分层。本文讨论了这种行为的可能原因。
要对运动进行全面分析,生物力学需要运动学和动力学数据。在循环中,使用主要集中在上肢和下肢的关节角度的运动捕获系统获得运动学数据。实际上,在自行车拟合分析中,经常研究有关下肢关节角速度和关节角加速度的信息。至于动力学,有必要使用仪器踏板来了解下肢施加到踏板上的力。使用从踏板获得的信息,可以通过诸如有效性索引(IE)等指标来评估踏板技术。IE定义为切向力与施加在踏板上的总力的比率(Millour,Velásquez和Domingue,2023年)。尽管该指标非常重要,但由于技术的成本和少数供应商的成本,仍存在一些差距,这限制了其在自行车配件中的实施。此外,这些因素限制了对影响踏板技术的生物力学因素的理解。在自行车拟合过程中,尚不清楚将力向踏板的传播是否有效(Bini,Hume和Croft,2011年; Menard,
齿轮通常被定义为齿轮或多杆凸轮,通过连续接合和脱离牙齿的方式将功率和运动从一个轴传递到另一个轴。齿轮通常在众多机器的各个行业中使用,例如工厂自动化,工业机器人,建筑机器,汽车等。尖刺齿轮具有平行于旋转轴的牙齿,用于将功率和运动从一个轴传输到另一个轴(平行轴)。在所有类型的齿轮中,刺齿轮被认为是最简单的齿轮[2]。刺激齿轮的设计取决于输入参数,例如功率,速度,操作条件,疲劳寿命以及需要迭代过程。许多研究人员已经在计算机辅助工程工具的帮助下进行了分析和检查,因此在齿轮的螺距圆圈上估计了在齿轮的牙齿上的有效圆周力,而在网络划分时,在从一个轴到另一个轴向另一个轴的动力和运动传输过程中,在齿轮对中实际上有两种应力。它们是(a)弯曲应力,由于切向力而引起的齿轮齿和(b)由于要发射的功率的径向分量引起的表面接触应力[4],[5]。已将各种钢,铸铁,青铜和酚树脂用于齿轮。新材料,例如尼龙,钛和烧结铁在齿轮工作中也变得很重要[1]。材料和制造工艺将它们转换为有用的零件,这是所有工程设计的基础。有超过100,000种工程材料可供选择。典型的设计工程师应准备好访问30至60材料的信息,具体取决于他或她处理的应用程序范围[11]。由于材料科学领域的快速发展,研究人员正在提出越来越多的材料。这引起了物质宇宙的巨大增加,并将我们的注意力集中在6个大型类别之间的竞争上:金属,聚合物,弹性体,陶瓷,玻璃,复合材料,因此导致了材料选择过程中的困惑。迈克尔·阿什比(Michael Ashby)建议的一种技术是一种先进的材料选择过程,它提供了材料图,以获取所需物镜的最佳材料,例如最大化质量或刚度。材料限制性能,因此该技术显示了将一个属性与另一个属性绘制的想法。如果该技术是精心实施的,它为我们提供了选择过程的潜在候选材料[6]。在CES Edupack软件上,可以轻松地将提出的想法作为计算机辅助工具实现。在Ashby图表中,都强调了机械,光学,热,物理等特性[7]。如今,几乎每种应用都需要轻巧和高强度设计,例如汽车,机器人应用,航空航天行业和机械。在这项研究中,我们将研究设计轻质和高强度刺激齿轮所需的材料。主要目标,设计要求,