https://doi.org/10.26434/chemrxiv-2023-hc8jv-v3 orcid:https://orcid.org/0000-0000-0001-7981-5162不通过chemrxiv peer-review dectect content。 许可证:CC由4.0https://doi.org/10.26434/chemrxiv-2023-hc8jv-v3 orcid:https://orcid.org/0000-0000-0001-7981-5162不通过chemrxiv peer-review dectect content。许可证:CC由4.0
在 IV 族单硫族化物中,层状 GeSe 因其各向异性、1.3 eV 直接带隙、铁电性、高迁移率和出色的环境稳定性而备受关注。电子、光电子和光伏应用依赖于合成方法的开发,这些方法可以产生大量具有可控尺寸和厚度的晶体薄片。在这里,我们展示了在低热预算下,在不同基底上通过金催化剂通过气相-液相-固相工艺生长单晶 GeSe 纳米带。纳米带结晶为层状结构,带轴沿着范德华层的扶手椅方向。纳米带的形态由催化剂驱动的快速纵向生长决定,同时通过边缘特定结合到基面而进行横向扩展。这种组合生长机制能够实现温度控制的纳米带,其典型宽度高达 30 μm,长度超过 100 μm,同时保持厚度低于 50 nm。单个 GeSe 纳米带的纳米级阴极发光光谱表明,在室温下具有强烈的温度依赖性带边发射,其基本带隙和温度系数分别为 E g (0) = 1.29 eV 和 α = 3.0×10 -4 eV/K,证明了高质量 GeSe 和低浓度的非辐射复合中心,有望用于包括光发射器、光电探测器和太阳能电池在内的光电应用。
列中阶段缺乏翻译顺序,但具有方向顺序。nematic阶段已经在各种系统中发现,包括液晶,相关材料和超导体。在这里,我们报告了磁性列相,其中基部成分由磁性螺旋组成。我们使用谐振软X射线散射直接探测与磁性螺旋相关的阶参数,并找到具有复杂时空特征的两个不同的列型相。使用X射线相关光谱法,我们发现两个列型相之间的相边界附近,波动在多个不同的时间尺度上共存。我们的微磁模拟和密度功能理论计算表明,波动随着磁性螺旋的重新定位而发生的,表明自发对称性破裂和新的自由度的出现。我们的结果为表征外来阶段的框架提供了一个框架,可以扩展到广泛的物理系统。
过往表现并不能保证未来的结果。所有投资都涉及风险,包括本金损失。富兰克林列克星敦 PE 二级市场基金(简称“基金”)面临高度风险;具体风险考虑因素如下。集中风险:投资应被视为多资产投资组合中的长期投资,不应单独视为完整的投资计划。流动性风险:该策略应被视为长期投资,因为它本质上缺乏流动性,只适合能够承担与该策略有限流动性相关的风险的投资者。有限的流动性仅通过该策略的季度回购要约提供给股东,回购量不超过该策略已发行股份的 5%(按净资产价值计算)。无法保证这些回购会按计划进行,或者根本不会进行。股东可能根本无法出售其在该策略中的股份,或者无法以优惠价格出售。赎回/要约收购:富兰克林邓普顿建议该策略每季度进行最多占该策略净资产 5% 的要约收购,但须经该策略董事会全权批准。无法保证该策略会在任何特定时期进行要约收购,股东可能无法在无限期内投标部分或全部股份进行回购。无论该策略的表现如何,股东都不应期望能够出售其股份。杠杆风险:使用杠杆会增加投资回报的波动性,并导致基金因投资价值下跌而遭受更大损失。与杠杆率较低的基金相比,杠杆率较高的基金对波动性更敏感,也更容易因资产价值下跌而遭受损失。基金分配:分配不保证,可能会发生变化。私人市场投资风险:该策略可能能够投资流动性差且交易清淡的私人证券,这可能会限制管理者以公平市场价值或在必要时出售此类证券以满足投资组合流动性需求的能力。就该策略投资私人控股公司而言,与投资上市公司相比,它们存在某些挑战并涉及增量风险,例如处理这些公司缺乏可用信息以及它们普遍缺乏流动性的问题。也不能保证公司会在证券交易所上市,因此,某些投资缺乏成熟的、流动性强的二级市场可能会对这些投资的市场价值以及投资者在有利时间或价格处置这些投资的能力产生不利影响。衍生品风险:衍生工具可能流动性差,可能会不成比例地增加损失,并可能对性能产生巨大影响。
引起了人们对不对称的Fabry -Pérot(FP)腔的重新兴趣,也称为Gires -Tournois谐振器。它们由一个光学厚和一个具有光学薄的金属镜来构成,光可以进入结构。这些光学元素以其在共鸣和增强所选波长上的光与肌电相互作用方面的易用性和有效性而闻名。[4,6,7]在FP谐振器中实现动态调谐的一般策略是,通常通过动态可调的材料(例如graphene)替换镜子之间通常位于镜子之间的被动绝缘体,[11-13]相位变化镁,[14]通过电流聚合物[14]通过(15]液晶(LCS)[16-18] [16-18] [16-18] [16-18] [16-18] [16-18][22]几项作品表明,在腔体中掺入的吲哚丁基氧化物的电控阳性促进了光吸收[12,19]的控制及其在中边缘[20]和近膜中的反射阶段。[21]其他研究利用了氧化氧化物[23]和聚合物[24-26],其纳米结构可调节所得的反射颜色。研究人员表明,掺杂危险的氧化锌[27]和氧化铝[28]的光学泵送允许在亚皮秒级方向上进行超快调节腔共振。也可以通过轻压以非惯性方式来实现[29]液体电解质中纳米颗粒的自组装[30]和相可可的元摩擦剂。[31]为了降低制造复杂性,多种响应材料
© 作者 2024。开放存取 本文根据知识共享署名 4.0 国际许可协议进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做出了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可协议中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可协议中,且您的预期用途不被法定规定允许或超出了允许的用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativeco mmons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
常见的移动阶段LC/UV流动阶段A:100 mm TEAA流动阶段B:100 mm TEAA在水/乙腈中(75:25 v/v)LC/MS流动期HFIP:六氟异丙醇
单位浓度酶的一个单位催化[32ppi]的1 nmol在37°C的20分钟内将1 nmol的[32ppi]转化为Norit-desorbable形式(Weiss单位)。