旋转。如果是,求出圆最高点的速度。如果不是,求出它刚静止时圆心上方的高度。(a)半径 m,珠子最初处于最低位置,初速度 m/s(b)半径 m,珠子最初与中心水平,初速度 m/s 向下
酶催化反应中辅因子和辅酶的化学性质和参与,金属激活的酶和金属酶,无辅因子的酶催化反应机理。活性位点,结合位点和催化位点的识别。初速度和底物浓度之间的关系,Michaelis-Menten 方程,Lineweaver-Burk 和 Eadie-Hofstee 图,动力学数据分析,数值练习。可逆和不可逆酶抑制,酶抑制的用途。
微粗糙度和低表面能防冰表面因具有超疏水和低冰亲和力而受到研究人员的极大兴趣。然而,通过模板法快速制备未开发微结构的超疏水表面 (SHS) 一直是进一步应用的瓶颈。在这项工作中,将负载石墨烯 (GP) 作为磁性纳米粒子的四氧化三铁 (Fe 3 O 4 ) 引入聚丙烯 (PP) 基质中,作为超疏水防冰/除冰表面的热载体。通过微注射成型和磁引力相结合的方法制备微结构 PP/GP/Fe 3 O 4 表面。使用多物理场耦合模型对具有磁引力的定向粒子迁移进行分析。磁引力使微柱的高度从~85 μ m 增大到~150 μ m,使表面保持较高水接触角(~153 ◦)和稳定的空气腹板,以便液滴以 1 ms-1 的初速度重复撞击。对于发育成熟的微柱,可以通过延长光路来更有效地吸收光以进行多次反射。与纯 PP 表面相比,在强度为 1 kW m-2 的一次太阳辐照下,复合材料表面的光热性能表明,温度在 67 秒内从环境温度升高到 94 ◦ C,而冰粘附强度在同期从~30 降低到~9 kPa。磁性粒子的光热功效可延长 SHS 结冰时间。由于 SHS 对室外注塑件具有出色的被动防冰和主动除冰性能,预计其将有望在制造中实际应用。