多项式方程的参数化系统在科学和工程的许多范围内都会出现,例如,动态系统的平衡,链接满足设计约束的链接,并在compoter视觉中进行场景重建。由于不同的参数值可以具有不同的实际解数,因此参数空间被分解为边界形成真实判别基因座的区域。本文认为将真实的判别基因座定位为机器学习中的超级分类问题,目的是确定参数空间上的分类边界,其中类是真实解决方案的数量。该艺术提出了一种新型的采样方法,该方法仔细采样了多维参数空间。在每个样本点,同型延续用于获取相应多项式系统的实际解数。机器学习技术在内,包括最近的邻居,支持向量分类器和神经网络可有效地近似实际的判别基因座。学习了真正的判别基因座的一种应用是开发一种实际同义方法,该方法仅跟踪实际解决方案路径,与传统方法不同,该方法跟踪所有复杂的解决方案路径。示例表明,所提出的方法可以很好地近似复杂的解决方案边界,例如Aris-
引用:Jonathan RT Lakey 等人。“新型 BrainView qEEG 判别数据库的构建与验证”。Acta Scientific Neurology 7.6 (2024): 25-51。
图 1. CUD 患者与健康对照者的 FC 表型。(A)10 倍交叉验证的分类性能:基于 FC 的 XGBoost 模型的准确度、灵敏度和特异性分别为 0.83 ± 0.10、0.80 ± 0.18 和 0.85 ± 0.10。(B)通过计算特征出现在模型所有树中的频率,对 XGBoost 模型识别出的 40 个最具判别性的 FC 特征进行可视化。节点大小表示根据链接的 FC 重要性总和计算出的节点强度。(C)通过基于 Yeo 的 7 个网络对 FC 重要性进行分组获得的网络级判别模式。(D)平均网络间和网络内 FC 强度。网络间 FC 强度是通过计算每个网络和所有其他网络中判别连接的重要性的平均来计算的。VIS,视觉网络;SMN,躯体运动网络; DAN,背侧注意网络;VAN,腹侧注意网络;LIM,边缘网络;FPC,额顶叶控制网络;DMN,默认模式网络。
本研究重点是通过体外试验确定卢本巴希市 Kampemba 市区的现场样本的物理和力学特性。在本研究结束时,我们根据土壤参数对其进行了识别,并使用进行的识别试验的组指数法确定其承载能力,从而确定岩土分类。通过使用 AASHTO 分类方法(美国州际公路运输官员协会),我们研究后获得的结果显示,一般而言,土壤分为五类:A-2、A-4、A-5、A-6、A-7,具体而言,有关区域土壤分为八个亚类:A-2-4、A-2-6、A-2-7、A-4、A-5、A-6、A-7-5 和 A-7-6。后者对物理参数的全局值进行了统计分析和基于多层感知器的深度学习。其结果为:流限为31.77%±1.05%,塑限为18.71%±0.76%,塑性指数为13.06%±0.79%,2 mm 筛通过率为83.00%±3.33%,400 μm 筛通过率为76.22%±3.2%,4.75 mm 筛通过率为89.07%±2.99%,80 μm 筛通过率为70.62%±2.39%,稠度指数为1.66±0.61,流动性指数为-0.67±0.62,群体指数为8±1。 关键词
图 1. CUD 患者与健康对照者的 FC 表型。(A)10 倍交叉验证的分类性能:基于 FC 的 XGBoost 模型的准确度、灵敏度和特异性分别为 0.83 ± 0.10、0.80 ± 0.18 和 0.85 ± 0.10。(B)通过计算特征出现在模型所有树中的频率,对 XGBoost 模型识别出的 40 个最具判别性的 FC 特征进行可视化。节点大小表示根据链接的 FC 重要性总和计算出的节点强度。(C)通过基于 Yeo 的 7 个网络对 FC 重要性进行分组获得的网络级判别模式。(D)平均网络间和网络内 FC 强度。网络间 FC 强度是通过计算每个网络和所有其他网络中判别连接的重要性的平均来计算的。VIS,视觉网络;SMN,躯体运动网络; DAN,背侧注意网络;VAN,腹侧注意网络;LIM,边缘网络;FPC,额顶叶控制网络;DMN,默认模式网络。
摘要 在本文中,我们提出了一种基于 P300 电位的拼写器分类器训练新方法。该方法基于引导,是一种已知的生成新样本的策略,但在神经科学中很少使用。该研究首先展示了传统方法中分类任务(检测 P300 和非 P300 类别)的性能可能不是最优的。然后,提出了一种从训练数据中抽取新样本的新方法。使用单个 P300 和非 P300 样本的平衡子组重新训练每个分类器。使用 16 个脑电图通道从 14 名健康受试者收集数据。这些数据经过带通滤波和抽取。随后,使用传统方法训练四个线性分类器,然后使用所提出的方法,每个类别有 1000、2000 和 3000 个样本。结果表明,使用所提方法,判别分类器的准确率和判别能力有所提高,同时保持了训练数据和测试数据之间的相同统计特性。相比之下,对于生成分类器,结果没有显著差异。因此,强烈建议使用所提方法训练基于拼写的 P300 电位的判别分类器。
摘要:具有党派倾向的媒体通过发布新闻文章支持自己倾向的政党来引导舆论方向,因此发现新闻文本中的政治偏见对国家选举预测和舆情管理具有重要的现实意义。一些带有偏见的新闻往往表述晦涩、文风模棱两可,而依靠新闻语义信息进行立场判别的方法绕过语言模型,准确率较低。本文提出一种基于社会背景信息融合异构网络的新闻立场判别方法,该方法从外部信息和基于新闻语义的细粒度主题拓展了创作者和话题者对新闻立场的判断能力。节点的多属性特征丰富了节点的特征表示,异构网络的联合表示可以降低立场判别对新闻语义信息的依赖。为了有效处理新新闻的立场判别问题,将多属性融合异构网络的设计扩展到归纳学习中,避免了重组带来的模型训练成本。本文基于 Allsides 数据集,扩展了作者的社会背景信息,并与基于新闻内容的政治立场判别模型进行了比较。实验中,最好的传导属性融合异构体
摘要。在过去的几年中,歧视性和生成性的大语言模型(LLM)已成为自然语言处理的主要方法。,尽管取得了重大进步,但在比较跨语性生物医学概念归一化中判别和生成性LLM的性能仍然存在差距。在本文中,我们对几个LLM进行了比较研究,涉及跨语言生物医学概念通过致密检索的具有挑战性的任务。我们利用涵盖10种语言的XL-BEL数据集来评估模型在不进一步适应的情况下在各种语言环境中概括的能力。实验发现表明,E5是一种判别模型,表现出卓越的性能,而生物分类出现为表现最佳的生成LLM。复制实验的代码可在以下网址提供:https://github.com/hrouhizadeh/zsh_cl_bcn。