摘要 随着气候危机的加剧,制冷系统引起了越来越多的研究关注。太阳能制冷是最成熟的可行解决方案之一,因为必要的冷却能量是通过利用可用的太阳辐射产生的。吸收式制冷机利用太阳热能产生冷却能量,由驱动热源(如太阳能)提供冷却能量以产生冷却功率。现有文献主要介绍小型系统(小于 50 kW c )的案例研究和模拟。所介绍的案例研究调查了单效 316 kW c 吸收式制冷机在不同可再生能源驱动热源场景(太阳能驱动、生物质驱动和混合方法)下的性能。结果表明,与生物质或太阳能作为唯一热源的场景相比,联合热发电(太阳能场和生物质锅炉串联)的性能明显更优。此外,吸收式制冷机的经济指标似乎比同容量的离心式电制冷机更具吸引力,因为投资回收期显著缩短。净现值 (NPV – 与离心式电制冷机相比,吸收式制冷机高出 75% 以上) 和投资回报率 (ROI) 值在吸收式制冷机方案中有所增加 (18.03% 对比离心式电制冷机的 15.24%)。本文描述的系统在东马其顿和希腊色雷斯运行,是最大的自给自足能源社区之一的一部分。所提出的案例研究是首次尝试对在当地能源社区运行的大型 (超过 250 kW c ) 冷却系统进行性能评估。
自由活塞斯特林制冷机在空间技术中的应用越来越广泛,特别是用于冷却卫星和其他空间相关设备上的红外传感器。本研究重点是使用 SAGE 12 软件设计和优化一体式自由活塞斯特林制冷机。该设计采用电磁驱动谐振机构和间隙密封装置,以确保最佳效率、COP 和最小系统振动。设计的一体式自由活塞斯特林制冷机在 80 K 时可产生 1.58 W 的制冷效果,COP 为 0.0424。对设计的制冷机进行了全面评估,以评估不同设计特性和操作参数的影响。随后,使用 Ansys Maxwell 软件设计了制冷机所需的动磁式线性电机。在研究的最后阶段,原始制冷机设计进行了修改,将单网格再生器替换为多网格再生器。确定了多网格再生器的最佳组合,以提高系统性能。分析表明,在具有多网格再生器的整体式低温冷却器中,当较粗的网格位于再生器管的热侧而较细的网格位于再生器管的冷侧时,系统性能会得到改善。
Q9 。一台可逆热机在温度为 600 o C 和 40 o C 的两个储液器之间运行。该热机衍生出一台可逆制冷机,该制冷机在温度为 40 o C 和 -20 o C 的储液器之间运行。传给热机的热量为 2MJ,组合式热机和制冷机装置的净功输出为 360kJ。求出 40 o C 时传给制冷剂的热量和传给储液器的净热量。如果热机的效率和制冷机的 C.O.P.分别为最大可能值的 40%,也求出这些值。
摘要。本文对太阳能制冷进行了全面比较。在三个地点(利雅得、阿布扎比和巴勒莫)评估了第三产业建筑的详细模型,并结合了四个太阳能制冷系统:两个太阳能热制冷系统(溴化锂吸收式制冷机和吸附式制冷机)、一个太阳能干燥剂蒸发冷却系统和一个太阳能电制冷系统(光伏与压缩式制冷机结合)。多变量优化程序选择每个组件的最佳尺寸。结果表明,基于吸收式制冷机的太阳能制冷系统无论在何处都能满足制冷需求,而干燥剂蒸发冷却系统的性能则受环境条件的显著影响。电太阳能制冷方案显示出最佳的整体效率,尽管存储系统成本高昂,但它似乎是一种经济高效的解决方案。
我们提出了一种将太赫兹 (THz) 频率量子级联激光器 (QCL) 完全集成到稀释制冷机内的方案,以便将 THz 功率定向传输到样品空间。我们描述了位于制冷机脉冲管冷却器级上的 2.68 THz QCL 的成功运行,其输出通过空心金属波导和 Hysol 热隔离器耦合到位于毫开尔文样品级上的二维电子气 (2DEG) 上,实现了从 QCL 到样品的总损耗 ∼− 9 dB。热隔离器限制了热量泄漏到样品空间,实现基准温度 ∼ 210 mK。我们观察了 QCL 在 2DEG 中引起的回旋共振 (CR),并探讨了 QCL 对制冷机所有阶段的加热影响。在低至 ∼ 430 mK 的电子温度下可以观察到由 THz QCL 引起的 CR 效应。结果表明,在稀释制冷机环境中利用 THz QCL 以及在极低温(< 0.5 K)凝聚态实验中传输 THz 功率是可行的。
将基于先进吸收式制冷机的高效热制冷技术以及可选的其他服务集成到供热和制冷网络中,需要能够在 100 ºC 以上的温度下输送能量(这是水存储的物理极限)。因此,到目前为止,只有可管理的能源(如化石能源(天然气或煤炭)和生物质)才能满足需求,例如,性能系数 (COP) 大于 1 的双效吸收式制冷机。将间歇性热能源(如太阳能)集成到中温应用中,需要开发基于在此温度范围内(即 130 至 300 ºC 之间)性能稳定的流体的存储选项。
诺斯罗普·格鲁曼航空系统公司 (NGAS) 于 2019 年将 Mini Cooler Plus (MCP) 引入了他们的脉冲管制冷机系列 [1]。这种热机械单元 (TMU) 是其太空级脉冲管制冷机的延伸,所有这些制冷机都旨在为战术机载和太空应用中的高光谱和红外成像有效载荷提供长寿命(十年以上)的低质量、高冷却能力。该制冷机采用模块化分体式配置,可灵活放置压缩机(波发生器)和冷头,以满足可用的封装限制。冷头组件可以相对于压缩机组件定向到任何位置,传输管线(长度和形状)可以根据个别应用定制。TMU 重量不到 3 公斤,在 300K 排出温度下,可在 45K 下提升 1.5 W 或在 110K 下提升 11 W,电输入为 150 W。本文报告了 MCP 单元的鉴定测试,该单元为即将执行的太空飞行任务达到了技术就绪水平 (TRL) 6,并介绍了在飞行配置下在一系列输入功率和排斥温度下获得的测试数据。冷却器在适合其太空应用的一系列运行和待机条件下经受了发射振动和热循环条件。在整个鉴定程序中,冷却器的测量负载线和稳定的制冷性能证明了该设计已准备好飞行。还使用 Northrop Grumman 的 TRL9 CCE(控制电子设备)对该单元进行了功能测试,没有主动振动控制,并针对所有轴描述了 TMU 的振动特征。
术语 缩写 AC 吸收式制冷机 ATES 蓄水层热能储存 BDHC 双向区域供热制冷 BTES 钻孔热能储存 CC 压缩式制冷机 CCCP 传统中央循环泵 CCHP 冷热电联产 CHP 热电联产 COP 性能系数 DC 区域制冷 DH 区域供热 DHC 区域供热制冷 DHW 生活热水 DS 区域系统 DVSP 分布式变速泵 EA 电力调节 EAC 电力调节能力 EC 电动制冷机 EES 工程方程求解器 ESS 储能系统 GSHP 地源热泵 GT 燃气轮机 HEX 热交换器 HP 热泵 HRSG 热回收蒸汽发生器 ICE 内燃机 LTDHC 低温区域供热制冷 MILP 混合整数线性规划 MINLP 混合整数非线性规划 NG 天然气 PGU 发电机组 PHE 板式换热器 PSO 粒子群优化 PV 光伏 RES 可再生能源 SNG 合成天然气 TES 热能储存 TEST 热能储存罐
• 许多红外天文学需要< 3 K,因此不能通过制冷机来满足 – “无制冷剂”超导磁体或SQUID阵列 – 再液化LN 2 、LHe或其他制冷剂 – 热辐射屏蔽的冷却 – 基于HiTc的电子设备的冷却,例如用于电池的微波滤波器