目标。在体内开发和体内演示具有数字地址的螺纹式无线植入神经刺激器。方法。这些设备通过其两个电极执行,通过表皮纺织电极传导通过体积传导传递的无害高频电流爆发。通过避免需要大型组件获得电能,这种方法允许开发薄设备,这些设备可以通过最小的入侵程序(例如注射)肌肉内植入。为了符合电气安全标准,该方法需要在植入电极之间按毫米或几厘米的少量订单或几厘米的最小距离。此外,设备必须对组织造成最小的机械损害,避免脱位并足以长期植入。考虑到这些要求,植入物被视为管状和柔性设备,在相对末端有两个电极,在中间部分,是一个藏有电子设备的密封金属胶囊。主要结果。The developed implants have a submillimetric diameter (0.97 mm diameter, 35 mm length) and consist of a microcircuit, which contains a single custom-developed integrated circuit, housed within a titanium capsule (0.7 mm diameter, 6.5 mm length), and two platinum- iridium coils that form two electrodes (3 mm length) located at opposite ends of a silicone body.这些神经肌肉刺激器是可寻址的,可以建立一个可以独立控制的微刺激器网络。意义。通过在麻醉兔子的后肢中注入其中一些,并诱发受控和独立的收缩,证明了它们的操作。这些结果表明,通过使用适用于慢性电子植入物建立的制造技术和材料,制造类似螺纹的无线神经肌肉刺激器的可行性。这为通过此类无线设备的密集网络形成的高级运动神经预测的临床开发铺平了道路。
摘要 深部脑刺激是一种基于设备的神经外科技术方法,是治疗帕金森病运动障碍的独特而专门的方法。它的基本功能是减轻运动症状和恢复运动功能。然而,在脑的 STN 中插入小微电极是一项复杂的任务。嵌入微传感器(微电极)和编码 DBS 设备具有挑战性,并且是最终结果/临床结果的主要量化重要因素。本研究介绍了最新的科学成果——帕金森病研究,并强调了包罗万象的众所周知的网络与精确达到目标的 DBS 相结合的重要性。DBS 还为研究帕金森病大脑中各种皮层下结构的电活动(即振荡神经活动)提供了独特的机会。推进解剖结构和功能网络的目标,专注于病理神经活动的发明,将解决和改善 DBS 的临床结果并降低运动障碍。该研究还通过实验研究了目标皮层下结构和靶向方法的最新发现,并提出了全面细致的创新技术和创造性机制,这些技术和机制支持编码 DBS 技术并加速选择内置生物反馈信号中的参数期望,即 DBS 中整合的生物标志物和局部场电位,现在被定义为自适应闭环 DBS 系统。这些科学进步的重点是实现通过最不可能/最不可能的运动障碍来预防主要运动特征。增强对涉及病理神经元和神经活动的计算生成的解剖结构和功能网络的针对性将在临床和预后上推进 DBS 效应,并消除运动障碍和构音障碍(不良影响)。
受伤的周围神经通常表现出不满意和不完整的功能结果,并且没有改善再生的临床批准疗法。术后电刺激(ES)增加了轴突再生长,但实际挑战,从延长手术室时间到与经皮丝的位置相关的风险和陷阱,可以阻止广泛的临床采用。本研究以高级生物吸收材料的形式提出了一种可能的解决方案,用于一种薄,柔性,无线植入物,该植入物在术后即时术中提供了短暂的损伤神经的精确控制的ES。后期,快速,完整和安全的生物吸附模式自然,并迅速消除所有组成材料,而无需手术提取。生物吸附率异常高得出,从使用独特的双层外壳结合了生物相容性形式的多丙二醇形式作为封装结构的两种不同的公式,以加速活性成分和限量片段的吸收直至完全吸收。由胫骨神经横断的小鼠模型与重新施加症的鼠标表明,该系统提供了与常规有线刺激器相匹配的性能和功效水平,但无需扩展手术周期或提取设备硬件。
传感神经刺激器是一种用于长期观察大脑活动的先进技术,在闭环神经调节和植入式脑机接口方面表现出巨大潜力。然而,由于记录条件复杂且共模抑制比 (CMRR) 有限,传感神经刺激器记录的局部场电位 (LFP) 可能会受到心电图 (ECG) 信号的污染。在本研究中,我们提出了一种解决方案,用于从传感神经刺激器记录的局部场电位 (LFP) 中去除此类 ECG 伪影。添加同步单极通道作为 ECG 参考,然后应用两种预先存在的方法,即模板减法和自适应滤波。成功去除了 ECG 伪影,并且该方法的性能对残留刺激伪影不敏感。这种去除 ECG 伪影的方法拓宽了传感神经刺激器的应用范围。
摘要:经颅磁刺激(TMS)是治疗各种神经系统疾病的确定方法,例如抑郁症,阿尔茨海默氏病和耳鸣。TMS的新应用程序是封闭循环神经反馈(NF)方案,它需要对TMS系统的软件控制,而不是当前使用的手动控件。因此,开发了MAGCPP(https://github.com/magcpp)工具箱,并在这项工作中进行了描述。该工具箱可以通过C ++接口启用Magstim TMS设备的外部控制。在具有40%功率的TMS应用程序方案中将MAGCPP与其他两个工具箱进行比较,我们发现MAGCPP的工作速度更快,并且重复运行的可变性较低(MagCPP,Python,Matlab [平均值±STD [秒数]:1.19±0.00,1.19±0.00,1.59±0.01,1.44±0.02)。在实时数据处理平台中,MAGCPP与可选的GUI集成了其作为闭环NF-Scenario的一部分的能力。具有比其他工具箱的表现优势,MAGCPP是迈向完整闭环NF场景的第一步,并为新颖的研究设计提供了可能性。
非侵入性神经调节技术,包括经颅直流电刺激 (tDCS),已被证明可以调节神经元功能,并用于认知神经科学和治疗神经精神疾病。在这种情况下,动物模型提供了一种强大的工具来识别 tDCS 的神经生物学作用机制。然而,找到一个易于使用且允许各种刺激参数的电流发生器可能很困难和/或昂贵。在这里,我们介绍了 Open-tES 设备,这是一个在协作平台 Git-Hub 上共享的知识共享许可 (CC BY、SA 4.0) 下的项目。该电流发生器允许实现 tDCS(和其他类型的刺激),适用于啮齿动物,易于使用且成本低廉。已经进行了特性分析以测量所输送电流的精度和准确度。我们还旨在将其效果与临床试验中使用的商业刺激器(DC-Stimulator Plus,Neuro-Conn,德国)进行比较。为了实现这一目标,我们进行了一项行为研究,以评估其在减少小鼠抑郁相关行为方面的功效。刺激器的精度和准确度分别优于 250 nA 和 25 nA。本研究对小鼠进行的行为评估未发现临床试验中使用的商业刺激器和 Open-tES 设备之间存在任何显著差异。刺激器的准确度和精确度确保了刺激的高可重复性。该电流发生器是一种可靠且廉价的工具,可用于非侵入性脑电刺激领域的临床前研究。
Biopac 摘要 — 用于恢复运动和感觉的双向脑机接口 (BD-BCI) 必须实现同时记录和解码来自大脑的运动命令以及通过体感反馈刺激大脑。之前,我们开发并验证了一种用于运动解码的完全植入式 BCI 系统的台式原型。在这里,原型人工感觉刺激器被集成到台式系统中,以开发完全植入式 BD-BCI 的原型。人工感觉刺激器采用基于脉冲宽度调制的主动电荷平衡机制,以确保对长期接口电极的安全刺激,防止损伤脑组织和电极。在幻影脑组织中测试了 BD-BCI 系统的主动电荷平衡的可行性。通过电荷平衡,可以明显去除电极上的残留电荷。这是迈向完全植入式 BD-BCI 系统的关键里程碑。
下面总结的临床数据基于可用的同行评审的已发表文献,这些文献针对的是类似的可植入脊髓刺激 (SCS) 系统。PRECISION™ 系统与已发表文献中报道的 SCS 系统在预期用途、目标患者群体、技术、设备设计和输出特性方面相似。有效性分析中包括三项符合有效性特定纳入和排除标准的关键研究。安全性分析中包括共 11 项符合安全性特定纳入和排除标准的研究。有效性数据代表总共 116 名植入 SCS 系统的患者,而安全性数据代表总共 1056 名意向治疗患者和 880 名永久植入患者。