摘要。这项工作旨在回顾人工神经网络 (ANN) 的最典型实现,这些实现在前馈神经网络 (FNN) 和循环神经网络 (RNN) 中实现。讨论了 ANN 架构和基本操作原理的本质区别。学习过程的问题分几个部分介绍。使用 ANN 进行预测的优势已在自适应教育学、医学和生物学分类、工业等多个热门领域得到证实。JEL:C45。关键词:人工智能;人工神经网络;前馈神经网络;循环神经网络;感知器。引用:Alytis Gruodis (2023) 人工神经网络在过程建模中的实现。当前实现概述。– 应用业务:问题与解决方案 2(2023)22–27 – ISSN 2783-6967。https://doi.org/10.57005/ab.2023.2.3
$ 共同第一作者 *共同最后作者 连载标题:靶向疗法机械地重新编程黑色素瘤细胞 关键词:黑色素瘤、细胞外基质、YAP、MRTF、靶向疗法、耐药性 利益冲突。作者声明不存在潜在利益冲突。财政支持:这项工作得到了癌症计划框架内的国家健康与医学研究所 (Inserm)、Ligue Contre le Cancer、国家癌症研究所 (INCA_12673)、ARC 基金会、ITMO Cancer Aviesan(国家生命科学与健康联盟、国家生命科学与健康联盟)和法国政府的资金支持(国家研究机构,ANR)通过“未来投资”LABEX SIGNALIFE:计划编号# ANR-11-LABX-0028-01。我们还感谢 Conseil général 06 和 Canceropôle PACA 的财政支持。 RBJ 获得了 ARC 基金会的博士奖学金。 IB 获得了抗癌联盟的博士奖学金。通讯作者:Sophie Tartare-Deckert tartare@unice.fr 和 Marcel Deckert deckert@unice.fr,Inserm UMR1065/C3M,151 Route de Ginestière BP2 3194,F-06204 Nice cedex 3。
摘要这项研究提出了一种新型的杂交元神经算法,正弦辅助教学学习学习的优化(SCATLBO),旨在训练用于单声道和多模式医学图像注册的喂养前进神经网络(FNNS)。scatlbo结合了正弦骨算法(SCA)的优势,用于探索基于教学学习的优化(TLBO),以实现剥削,达到了平衡,从而增强了算法能力,以避免局部最小值并提高逆转率。医学图像注册,对于准确的医学分析必不可少的,从这种混合方法中受益,因为它有效地对齐了复杂的多模式图像。在这项工作中,SCATLBO用于训练来自癌症基因组乳房侵入性癌(TCGA-BRCA)数据集的乳房MRI图像。SCATLBO的性能是针对几种众所周知的元启发式算法的基准测试,包括TLBO,粒子群优化(PSO),蚂蚁菌落优化(ACO),灰狼优化器(GWO)和进化策略(ES),以及基于平均平方误差(MSE)的评估(MIS)和杂音的评估(MI)。实验结果表明,SCATLBO在准确性,收敛速度和稳健性方面优于其他技术,将其确立为基于神经网络的图像注册任务的有前途的工具。这项工作有助于提高FNN的元启发式培训方法,并在各种医学成像领域中使用了潜在的应用。
在现代物理学的许多领域,利用光场对量子态进行鲁棒控制至关重要。根据平台不同,这可以通过单光子或双光子驱动场来实现单量子比特和纠缠操作[1-3]。控制保真度可以通过使用脉冲整形方案来增强[4]。一种广泛使用的技术是受激拉曼绝热通道(STIRAP)[5,6],它通过耦合到中间态实现两个离散态之间的粒子数转移。STIRAP 的显著优点是它不受中间态自发辐射损失的影响,并且在激光强度等实验条件下对噪声相对不敏感[6]。这使得 STIRAP 在超导电路[7]、囚禁离子[8]、氮空位中心[9]、光机械谐振器[10]、光波导[11]和超冷分子合成[12]中找到了重要的应用。尽管 STIRAP 对激光振幅噪声不太敏感,但它本身对快速激光相位噪声很敏感,因为它依赖于暗态的绝热演化 [6,13] 。为了最大限度地降低相位噪声,需要使用线宽较窄的激光器。这通常是通过主动将光的频率稳定到稳定的参考点(如光学腔)来实现的。这个过程降低了反馈环路带宽内频率的相位噪声,但也会在更高频率下引入额外的噪声。这种高频相位噪声俗称伺服
兴趣使他走出了物理学同事们的工作领域,并搬到了整个大陆。• 他接受了加州理工学院化学和生物学教授的职位。• 在那里,他可以免费使用计算机资源
为了实现容错量子计算,我们需要在初始化量子设备后重复以下四个步骤。首先,我们执行 1 或 2 个量子比特量子门(如果可能的话,并行执行)。其次,我们对量子比特的子集进行综合征测量。第三,我们执行快速经典计算以确定发生了哪些错误(如果有)。第四,根据错误,我们应用校正步骤。然后,该过程对下一个门序列重复。这四个步骤对于实现容错量子计算至关重要。为了使这四个步骤成功,我们需要门的错误率低于某个阈值。不幸的是,当前量子硬件的错误率仍然太高,无法满足这一要求。另一方面,当前的量子硬件平台在设计时就考虑到了这四个步骤。在本研究中,我们利用这个四步方案,不是执行容错计算,而是增强执行 1 量子比特门和最近邻 2 量子比特门的短、恒定深度量子电路。为了探索这如何有用,我们研究了一个称为局部交替量子经典计算 (LAQCC) 的计算模型。在这个模型中,量子比特被放置在一个网格中,它们只能与它们的直接邻居交互;量子电路具有恒定深度和中间测量值;经典控制器可以对这些中间测量结果执行对数深度计算,并根据结果控制未来的量子操作。该模型自然地适合 NISQ 时代的量子算法和成熟的容错量子计算。我们展示了 LAQCC 电路如何创建恒定深度量子电路无法实现的长距离交互,并使用它来构建一系列有用的多量子比特操作。利用这些门,我们创建了三种新的状态准备协议,用于任意数量的状态、W 状态和 Dicke 状态的均匀叠加,这是 W 状态的泛化。此外,我们表明这种类型的模型包含不太可能被经典模拟的电路,并通过展示 QNC 1 的包含来限制该模型的功率
本体感觉提供了确定肢体位置和运动所需的关键信息,也可能用于更新可能构成运动和姿势控制基础的内部模型。对患有慢性大纤维失神经症的患者的上肢运动的开创性研究为本体感觉信息在假设形成和维持内部模型以产生准确的运动指令方面的作用提供了证据。视觉也有助于感觉运动功能,但不能完全弥补本体感觉的缺陷。最近的研究表明,姿势和运动控制过程在大脑中是侧化的,本体感觉在协调这些过程对目标导向动作控制的贡献方面起着根本性的作用。事实上,失神经症患者每个肢体的行为类似于控制器单独执行的动作。因此,本体感觉提供了神经系统有效协调多个运动控制过程所需的状态估计。
尽管用于恢复运动功能的脑机接口技术发展迅速,人们对此也产生了浓厚的兴趣,但假手指和假肢的性能仍无法模仿自然功能。将脑信号转换为假肢控制信号的算法是实现快速逼真的手指运动的限制因素之一。为了实现更逼真的手指运动,我们开发了一个浅层前馈神经网络来解码两只成年雄性恒河猴的实时双自由度手指运动。使用两步训练方法,引入重新校准的反馈意图训练 (ReFIT) 神经网络以进一步提高性能。在对两只动物进行 7 天的测试中,神经网络解码器的手指运动速度更快、更自然,与代表当前标准的 ReFIT 卡尔曼滤波器相比,吞吐量提高了 36%。这里介绍的神经网络解码器展示了优于当前最先进水平的连续运动的实时解码,并可以为使用神经网络开发更自然的脑控假肢提供一个起点。
摘要:联想记忆一直是大规模循环新皮质网络执行计算的主要候选对象。实现联想记忆的吸引子网络为许多认知现象提供了机械解释。然而,吸引子记忆模型通常使用正交或随机模式进行训练,以避免记忆之间的干扰,这使得它们不适用于自然发生的复杂相关刺激,如图像。我们通过将循环吸引子网络与使用无监督赫布-贝叶斯学习规则学习分布式表示的前馈网络相结合来解决这个问题。由此产生的网络模型结合了许多已知的生物学特性:无监督学习、赫布可塑性、稀疏分布式激活、稀疏连接、柱状和层状皮质结构等。我们评估了前馈和循环网络组件在 MNIST 手写数字数据集上的复杂模式识别任务中的协同效应。我们证明了循环吸引子组件在前馈驱动的内部(隐藏)表示上进行训练时实现了联想记忆。联想记忆还被证明可以从训练数据中提取原型,并使表示对严重失真的输入具有鲁棒性。我们认为,从机器学习的角度来看,所提出的前馈和循环计算集成的几个方面特别有吸引力。