为了实现容错量子计算,我们需要在初始化量子设备后重复以下四个步骤。首先,我们执行 1 或 2 个量子比特量子门(如果可能的话,并行执行)。其次,我们对量子比特的子集进行综合征测量。第三,我们执行快速经典计算以确定发生了哪些错误(如果有)。第四,根据错误,我们应用校正步骤。然后,该过程对下一个门序列重复。这四个步骤对于实现容错量子计算至关重要。为了使这四个步骤成功,我们需要门的错误率低于某个阈值。不幸的是,当前量子硬件的错误率仍然太高,无法满足这一要求。另一方面,当前的量子硬件平台在设计时就考虑到了这四个步骤。在本研究中,我们利用这个四步方案,不是执行容错计算,而是增强执行 1 量子比特门和最近邻 2 量子比特门的短、恒定深度量子电路。为了探索这如何有用,我们研究了一个称为局部交替量子经典计算 (LAQCC) 的计算模型。在这个模型中,量子比特被放置在一个网格中,它们只能与它们的直接邻居交互;量子电路具有恒定深度和中间测量值;经典控制器可以对这些中间测量结果执行对数深度计算,并根据结果控制未来的量子操作。该模型自然地适合 NISQ 时代的量子算法和成熟的容错量子计算。我们展示了 LAQCC 电路如何创建恒定深度量子电路无法实现的长距离交互,并使用它来构建一系列有用的多量子比特操作。利用这些门,我们创建了三种新的状态准备协议,用于任意数量的状态、W 状态和 Dicke 状态的均匀叠加,这是 W 状态的泛化。此外,我们表明这种类型的模型包含不太可能被经典模拟的电路,并通过展示 QNC 1 的包含来限制该模型的功率
主要关键词