图1:通过定制固-固材料实现的功能材料和结构。(a)将预沉积的平面形式从基底上释放后,由于良好粘附的层材料界面失配而导致的自卷起复合膜[1]。(b)通过控制其在基底上的键合位置和/或施加到基底上的预应变的释放路径,弹出具有多样空间形貌的介观结构[2]。(c)通过定位晶胞和/或控制其界面连接,表现出超大范围杨氏模量和泊松比的异质结构平面结构[3]。(d)通过在Miura(M)和蛋盒(E)模式下定制晶胞,实现具有可编程变形模型和力学性能的混合折纸[4]。(e)通过软基质中的硬颗粒旋转实现的机械膨胀结构[5]。(f)通过平板电脑在界面上的滑动机制实现的坚韧夹层玻璃[6]。
心血管疾病(CVD)是世界上最常见的疾病之一,具有高致病性和高死亡率的特点(Vong等,2018;Wang等,2022a;Qian等,2021)。CVD的临床治疗主要包括三种方式:药物治疗,这是最广泛的治疗方式,也是CVD治疗的基础;介入治疗,包括射频消融和心脏起搏治疗;外科治疗,包括搭桥治疗和心血管移植(Abdelsayed等,2022;Lunyera等,2023;Krahn等,2018)。血管移植主要用于恢复或建立新的血流通路,以维持或改善组织或器官某个区域的血液循环,例如因创伤或切除导致血管段缺损,或动脉栓塞或淋巴阻塞而需要“搭桥”形成循环系统的情况(Xing et al.,2021;Zhao et al.,2023)。血管移植要求供应血管具有与受体血管相同的外径和足够的长度。移植物也面临供区血液循环受损(缺血或淤滞)等问题。因此,迫切需要高性能的人工血管移植来替代自体血管进行血流重建。目前小口径人工血管(<6 mm)主要用于冠状动脉搭桥术、外周血管搭桥术、血管创伤(缺损≥2 cm)、血液透析的组织血管通路、器官功能恢复等(Asakura等,2019;Wang等,2021;Wu等,2018),但人工血管移植可导致吻合口血栓形成、内皮增生等严重并发症,影响管腔通畅性(Oliveira等,2020;Teebken和Haverich,2002;Zhuang等,2020)。此外,目前的人工血管支架虽然具备一定的力学性能和生物相容性或能提供血管再生所需的生化信号,但在模拟天然血管的结构和功能方面还存在明显的不足,现有的支架往往不能充分模拟天然血管网络的拓扑结构,并会诱导细胞爬行,从而影响血管支架在临床应用中的效果(Liang等,2016;Cheng等,2022)。因此,为提高小口径人工血管的通畅性,通过材料选择、表面改性等提高生物相容性/内皮化/力学性能成为重点研究方向。静电纺丝技术可以制备具有高比表面积和孔隙率的微/纳米纤维,可以模拟细胞外基质,促进细胞黏附、增殖和分化,为细胞提供良好的生长环境。该接收装置的设计可以制备不同直径的管状结构,是制备小直径人工血管支架的理想方法(姚等,2022;郭等,2023;宋等,2023;王等,2022b)。特别是利用该技术制备的血管支架可以负载生物因子,提高血管支架的生物相容性,促进血管快速内皮化。虽然目前的人工血管支架已经具备一定的力学性能、生物相容性或能提供血管再生所需的生化信号,但如何结合现有支架的优势,将生物因子负载于血管内,实现血管再生,是当前血管支架研究的热点。
摘要 卫星用于导航、通信、海洋学、天文学等。卫星的尺寸和形状多种多样。根据卫星的任务,使用不同的子系统。这些子系统安装在外壳内,以保护它们免受太空环境的影响。这个外壳也称为卫星主结构或机械结构,由耐用材料制成,可以承受发射和在轨期间的恶劣条件。卫星质量的优化现在至关重要,因为卫星每天都在损失质量以降低制造和发射成本。本综述首先介绍卫星分类和子系统的概况。然后,演示卫星自身所受的不同类型的机械载荷分析。探索了提升卫星机械结构性能的先进方法,重点关注等网格和蜂窝夹层结构的优化参数对卫星主结构机械性能的影响。简要介绍了小卫星的组装、集成和测试(AIt)。最后,总结了提高卫星主结构力学性能的重要潜在设计和进一步研究的挑战。
摘要:采用异种金属丝电子束增材制造技术在不锈钢基体上混合 5、10 和 15 vol.% Ti-Al-Mo-ZV 钛合金和 CuAl9Mn2 青铜,研究了制备的合金的微观结构、相和力学性能。结果表明,含 5 vol.% 钛合金的合金形成了不同的微观结构,含 10 和 15 vol.% 钛合金的合金也形成了不同的微观结构。第一种合金的特征是结构成分为固溶体、共晶金属间化合物 TiCu 2 Al 和粗大 γ 1 -Al 4 Cu 9 。它具有增强的强度并在滑动试验中表现出稳定的氧化磨损。另外两种合金还含有由于 γ 1 -Al 4 Cu 9 热分解而出现的大花状 Ti(Cu,Al) 2 树枝状晶粒。这种结构转变导致复合材料的灾难性脆化和磨损机制从氧化变为磨料。
摘要:锌及其合金因具有增强的生物相容性而被视为制备可生物降解医疗器械(支架和骨固定螺钉)的有前途的材料。这些材料必须实现机械性能和腐蚀性能的理想组合,而合金化或热机械过程可能会影响这些性能。本文介绍了不同机械合金化 (MA) 参数对 Zn-1Mg 粉末成分的影响。同时,本研究描述了 MA 制备对 Zn-6Mg 和 Zn-16Mg 合金的影响。采用放电等离子烧结 (SPS) 法压实选定的粉末。随后,研究了它们的微观结构并测试了它们的力学性能。整个过程导致晶粒显着细化(Zn-1Mg 为 629 ± 274 nm)并形成新的金属间相(Mg 2 Zn 11 、MgZn 2 )。烧结样品的压缩性能主要与合金元素的浓度有关,浓度增加导致强度提高但延展性变差。根据所得结果,Zn-1Mg合金的性能最好。
摘要 高 Jc 镍基高温合金在航空航天、海洋、核能和化学工业中得到广泛应用,这些工业领域需要具有出色的抗腐蚀和抗氧化性能、优异的机械性能和出色的高温性能。然而,由于这些合金的化学性质复杂,基于选择性激光熔化 (SLM) 的高 Jc 镍基高温合金的增材制造 (AM) 面临重大挑战。这些材料具有多种合金元素和较高的铝+钛含量,当通过 SLM 固结时会形成各种二次相,严重影响可加工性,导致裂纹的形成。本综述的目的是总结迄今为止在高 Jc 镍基高温合金 SLM 方面取得的进展,特别强调阐明该合金系统中加工、微观结构和性能之间的关系。关键词:高 Jc 镍基高温合金、增材制造、选择性激光熔化 (SLM)、加工、微观结构、力学性能
抗冲刷混凝土 (AWC) 是一种特殊的水泥基材料,可直接用于水下环境而无需分散。它是在大约 50 年前开发的,已发表了 150 多篇期刊文章和技术报告。本文全面回顾了 AWC 的基本新鲜状态和硬化状态特性,例如抗水性 (冲刷性)、稠度、抗渗色和离析性、力学性能和耐久性,以及相关的测试方法。清楚地介绍了 AWC 特性与传统混凝土特性之间的差异。还阐述了影响 AWC 性能的混合物成分、辅助胶凝材料 (SCM) 和其他条件。最后,本文讨论了 AWC 的具体性能要求及其在不同应用场合下的相应施工策略,包括正常建筑、海洋工程、散装填充和修复实践。本文还讨论了促进 AWC 发展的未来研究需求。
采用粉末冶金法合成金属基纳米复合材料,以二氧化铈 (CeO 2 ) 纳米粒子 (1、2、3、4 wt.%) 作为增强体,包含在铝 (Al) 金属基体中。研究了铝的结构和力学性能随增强 CeO 2 纳米粒子浓度的变化。采用共沉淀技术合成二氧化铈纳米粒子,其结构为面心立方 (fcc),平均晶粒尺寸为 12.80 nm。纳米复合材料的结构分析证实了 CeO 2 纳米粒子在铝基体中均匀分散。由于 CeO 2 纳米粒子的存在,铝的硬度值有显著提高,当铝基体中 CeO 2 的含量为 2 wt.% 时,硬度值最大,同时与纯铝相比,Al-CeO 2 纳米复合材料的磨损有所增加。腐蚀分析也证实了 Al-CeO 2 纳米复合材料耐腐蚀性能的提高,当 Al 基质中 CeO 2 的含量为 4 wt.% 时,耐腐蚀效率最高为 83.75%。
骨关节炎(osteoarthritis, OA)是一种常见于老年人和接受过半月板手术患者的退行性关节疾病,给全球大量患者带来巨大的痛苦。OA的主要病理特征之一是关节软骨的退行性改变。间充质基质细胞(MSCs)可分化为软骨细胞并促进软骨再生,在骨关节炎的治疗中具有巨大的潜力。但提高关节腔内MSCs的治疗效果仍是一个悬而未决的问题。近年来,由不同生物材料制成的水凝胶被公认为MSCs的理想载体。本文重点介绍水凝胶的力学性能对MSCs治疗OA效果的影响,并将人工材料与关节软骨进行了比较,旨在为进一步研发改性水凝胶以提高MSCs的治疗效果提供参考。
