非环状羰基叶立德与偶极亲和剂的选择性 [3+2] 偶极环加成反应是一种非常有用的方法,可以合成具有复杂饱和度和取代基变化的五元氧杂环。1 此类环醚(四氢、二氢和呋喃)是许多生物活性天然产物和药物中发现的重要结构基序。2 不幸的是,虽然 [3+2] 环加成仍然是上述产品的可行方法,但 1,3- 偶极羰基叶立德在化学界尚未得到充分利用,原因是催化剂昂贵或无法在温和条件下有效生成叶立德中间体。3 为了解决这些缺点,我们的小组开发了一种有机光氧化还原方案,从二芳基环氧物生成羰基叶立德,该方案在与偶极亲和剂环化后产生环醚。然后将这些环醚用于经典的木脂素天然产物全合成(方案 1)。4 虽然我们的方法范围广泛,并有效地为该木脂素天然产物子类提供了统一的方法,但通过这种方法在环加成过程中实现区域选择性尚未实现。
与各种亲电伙伴进行环加成反应,5 Zhao 等人和 Glorius 等人独立报道了[5 + 4] 环加成反应,以合成不同大小的高度功能化的环。6a、b Glorius 等人随后通过协同 N-杂环卡宾有机催化和钯催化,实现了乙烯基碳酸亚乙酯与烯醛的首次对映选择性[5 + 2] 环化反应,6c 而 Liang 等人报道了配体控制的乙烯基碳酸亚乙酯与萘酚之间的[3 + 2] 和[3 + 3] 环加成反应。7 尽管进行了这些广泛的研究,但我们不知道有关乙烯基碳酸亚乙酯[4 + n] 环加成反应的报道。 [4 + n] 环加成反应,尤其是 [4 + 2] 环加成反应,在合成有机化学中起着关键作用,因为它们可以快速生成具有挑战性但具有合成价值的环状化合物
尽管使用传统方法 5 或手性催化剂 6,7 或双催化 8 来实现非对映体不对称催化(DAC)的新策略仍备受关注。相反,虽然含氢键供体的双功能催化剂已经得到广泛应用,9 但是仅通过改变这种催化剂的氢键供体来控制非对映体选择性的方法还很少见。10 对于双功能叔胺催化,理论研究提出了三种工作模型,它们在催化剂的氢键供体与亲核试剂和亲电试剂的相互作用方式上有所不同(方案 1A)。11 – 15 离子对氢键模型(A 型)最初由 Wynberg 11 a 提出,并得到 Cucinotta 和 Gervasio 的理论研究支持。11 b 布朗斯台德酸-氢键模型(B 型)由 Houk 等人揭示。通过量子力学计算。12 A 型模型与 B 型模型的不同之处在于,催化剂的氢键供体分别用于激活亲电试剂和稳定亲核中间体,同时形成的烷基铵离子作为布朗斯台德酸分别与其余亲核试剂或亲电试剂相互作用。当涉及(硫)脲等双氢键供体时,反应可能通过 A 型模型的过渡态进行,其中两个 N – H 键都与亲电试剂相互作用,正如 Takemoto 通过实验研究 13 a 所建议并得到理论研究的支持,13 b – d 或通过模型 B,其中两个