在其核心上,热交换器加热涉及将热能从热源转移到流体或气体,然后将热量分配到所需的位置。热交换器充当介体,通过传导,对流和在某些情况下是辐射的结合来促进这种转移。典型的热交换器由两条独立的流体路径组成:一种用于加热介质,通常是蒸汽,热水或热导电油,另一个用于加热的流体,可以是空气,用于加热系统的水,或工业设置中的处理流体。
美的风冷涡旋式冷水机组采用空气作为冷却/加热源,水作为冷却/加热介质,通过室内终端(AHU/FCU)冷却/加热室内环境温度。风冷式冷水机组的初始投资和维护成本通常低于水冷系统,它不需要冷却塔、冷凝水泵和相关的冷凝水化学处理系统。模块化设计理念使应用从单机到多机系统再到数千吨的装机容量。采用高可靠性和卓越效率的系统,美的风冷模块化冷水机组成为各种风冷项目的最佳选择之一。凭借最新的模块化设计技术、高效的 V 型热交换器和精确的气体流量控制技术以及数字压缩机应用,美的风冷涡旋式冷水机组系统始终处于最高效率阶段。模块化和压缩机操作根据实际负载需求智能调整,以保持最经济的工作状态。它们广泛应用于学校、医院、购物中心、办公室以及工厂和制造加工区。
储存 Epotec YDB 400 树脂应储存在正常环境条件下,密闭容器中,存放在干燥阴凉的地方,温度最好低于 25°C。Epotec YDB 400 树脂易烧结,不应暴露在潮湿、阳光或其他加热介质中,以免结块。在适当的储存条件下,自制造之日起,其储存寿命至少为两年。建议在清空 Epotec YDB 400 袋时采取适当的预防措施,避免释放包装材料表面可能存在的静电。建议使用良好的排气装置,以避免在排放区域形成细粉云。处理 有关 Epotec YDB 400 安全储存和处理的更多说明,请参阅产品的 SDS。免责声明 我们产品的所有使用建议,无论是我们以书面、口头形式给出的,还是从我们进行的测试结果中暗示的,都是基于我们目前的知识状态。尽管本表中包含的信息是准确的,但我们对此类信息不承担任何责任。我们仅保证我们的产品符合指定规格,不作任何其他明示或暗示保证,包括任何适销性或特定用途适用性的保证,因为应用条件是我们无法控制的。如需更多信息,请联系:2195 San Dieguito Dr., Ste. 1 Del Mar, CA 92014 USA 索取报价或样品 909-626-4855 www.tri-iso.com
化学工程系 1 、电气工程与计算机科学系 2 和物理学系 2 密歇根大学,密歇根州安娜堡 48109 * alenert@umich.edu 最近在《自然》杂志上发表文章 1 LaPotin 和同事介绍了一种串联光伏电池,它可以将热辐射转化为电能,效率超过 40%,明显超过了蒸汽轮机的热电效率。这种电池模糊了太阳能和热光伏技术之间的界限,有助于提高太阳能的可调度性。正文 电网更多地采用可再生能源对于减少碳排放和实现碳中和至关重要。过去十年来,可再生电力的价格大幅下降至 0.01 美元/千瓦时,实现间歇性可再生能源(如风能和太阳能)高渗透率的最大障碍已成为部署足够的能源储存。现有的固定式储能容量以抽水蓄能水电 (PH) 为主,而新项目通常基于锂离子 (Li-ion) 电池。2 然而,这两种技术都无法满足日益增长的未满足需求,即廉价、长时间的固定式储能,这种储能基于地球上丰富的材料,几乎可以在世界任何地方实施。要解决这个问题,需要将成本降至约 20 美元/千瓦时,才能实现电网深度脱碳。3 为了解决这一储能问题,一些研究小组和初创公司正在开发热电池概念的超低成本版本。这些系统将热光伏 (TPV) 电池与廉价的热能存储 (TES)(陶瓷或石墨块)配对。在电力需求较低时,这些系统会通过电阻加热介质到更高的温度,并将能量存储在绝缘良好的罐中。当需求高时,存储的能量会以光(热辐射)的形式发射,TPV 电池会吸收这些光并转化为电能。结果是一种固定式储能方法,尽管往返效率较低,但与其他储能技术相比,它具有显著优势。这些优势包括低成本(如 PH)、无地理要求(与 PH 不同)、使用地球上储量丰富的储能材料,不需要耗费大量能源且破坏环境的开采(与锂离子不同),以及响应时间短,以秒为单位(与基于涡轮机械的储能不同)。后者对于调节风能和太阳能等间歇性可再生能源的供应特别有利。尽管前景光明,但热电池需要高效 TPV 电池才能实现,因为电池控制着它们的往返效率 (RTE)。一些估计表明,RTE > 36% 是