bipap ='Bilevel正气道压力'BSID-III ='Bayley的婴儿和幼儿发展,第三版'cmap ='复合运动动作电位'ec ='欧洲委员会'fda ='美国食品和药物管理局'Hine-2 ='Hammersmith婴儿神经系统检查,模块2'mv ='Millivolt'sma ='脊柱肌肉萎缩'smn ='运动神经元的生存'=“世界卫生组织” =“世界卫生组织”
● 神经元:脑细胞,将信号传递到脑的其他部分(第 1 部分) ● 神经递质:传递来自其他神经元信息的化学物质(第 1 部分) ● 动作电位:神经元内部因接收来自另一个神经元的信号而触发的电信号(第 1 部分) ● 囊泡:轴突末端含有神经递质的小隔间(第 1 部分) ● 多巴胺:一种神经递质(第 1 部分) ● 受体:接收释放信使的特定化学物质 ● 信使:将信号传递到下一个神经元 ● 转运蛋白:将神经递质带回细胞 循序渐进的课堂指南
学习成果 完成本模块后,学生将了解: - 计算神经科学的基本概念、理论基础和最常用的模型 - 相关的基本神经生物学知识和相关的理论方法以及这些方法迄今为止得出的结论 - 不同模型的优势和局限性 - 如何适当地选择用于建模神经系统的理论方法 - 如何在考虑神经生物学发现的同时应用这些方法 - 如何批判性地评估获得的结果。 - 如何使模型适应新问题以及开发新的神经系统模型。 内容 本模块提供有关神经系统组成部分及其建模的基本知识,包括有关神经元和神经回路内信息处理的基本神经生物学概念和模型。具体主题包括: - 神经元的电特性(能斯特方程、戈德曼方程、戈德曼-霍奇金-卡兹电流方程、膜方程) - 霍奇金-赫胥黎模型(电压依赖性电导、门控变量、瞬态和持续电导、动作电位产生) - 通道模型(状态图、随机动力学) - 突触模型(化学和电突触) - 单室神经元模型(整合-激发、基于电导) - 树突和轴突模型(电缆理论、拉尔模型、多室模型、动作电位传播) - 突触可塑性和学习模型(释放概率、短期抑制和促进、长期可塑性、赫布规则、基于时间的可塑性规则、监督/无监督和强化学习) - 网络模型(前馈和循环、兴奋-抑制、发放率和随机、联想记忆) -神经元和网络模型的相空间分析(线性稳定性分析、相图、分岔理论模块组件
这些信号可以是动作电位(单个尖峰或群体尖峰)或由同步兴奋性和/或抑制性突触传递引起的神经元膜电位变化。在海马体、皮质和小脑等大脑结构中,神经元以众所周知的层状排列。因此,可以使用一个或两个 MEA 电极刺激一组神经元,而连接神经元的相应“响应”可以由距离刺激点几百微米或毫米的另一组电极记录。在这种情况下,可以记录兴奋性突触后电位 (EPSP),因为来自特定区域的神经元组通常会在响应单个刺激时显示同步且可重复的活动。
与神经元网络的通信是通往大脑更高世界的大门,而神经电子学可能就是打开这扇大门的钥匙。顾名思义,新术语“神经电子学”被提出来描述与神经元网络无缝接口的电子设备,以实现畅通无阻的双相信息交换。从结构上讲,神经电子器件与脑组织一样柔软,可以最大限度地避免机械失配引起的炎症和损伤。它们与主要侧重于解码和编码电生理序列(例如,单元动作电位和局部场电位)的传统脑机接口技术本质上的区别在于,它们能够解读和传输以复杂的分子结构编译的神经信息
由于精确的实验研究,电生理学的研究取得了重大进步,这些研究基于电磁场理论,电化学和其他相关学科整合了数学描述。本电子书旨在使用定量方法对电生理学进行介绍,第一章涵盖了基本数学,第二章提供了对电场原理和当前传导媒体流量的简洁概述。随后的六章构成了核心材料,涵盖了诸如跨膜,膜通道,动作电位产生和传播的电压/电流分布等主题。本书还讨论了纤维对人工刺激的反应,例如心脏起搏器中的纤维以及这些过程在周围细胞外空间中产生的电压/电流。本文的先前版本因其对基本电生理主题的全面报道,包括细胞膜特性,动作电位,电缆理论和细胞外田地而受到赞誉。作者的目标是对该领域进行定量介绍,使医学物理学,生物医学工程,生物学和生理学的学生可以使用它。著名的专家Roger C. Barr,杜克大学生物医学工程教授,为他的领域做出了重大贡献。 他于1995年从斯洛伐克科学学院获得了技术科学博士,并担任了各种学术职位,包括凯斯西部储备大学生物医学工程系主席(1976- 1980年)和杜克大学教授(1968-1983)。著名的专家Roger C. Barr,杜克大学生物医学工程教授,为他的领域做出了重大贡献。他于1995年从斯洛伐克科学学院获得了技术科学博士,并担任了各种学术职位,包括凯斯西部储备大学生物医学工程系主席(1976- 1980年)和杜克大学教授(1968-1983)。Barr因其工作而获得了许多奖项,包括Ragnar Granit奖(2004年),Centennial Medal(1984)和Millennium Medal(2000)。作为杜克大学的教授,巴尔(Barr)教授生物电课程,是100多个关于生物电论主题的研究论文的作者。他还是IEEE和美国心脏病学院的院士。文本引入了电生理学,一种定量方法,用于了解生物环境中的电场和当前流动。它首先要总结必要的数学概念,然后深入研究核心材料,涵盖膜电压,动作电位,传播以及对人工刺激的反应。随后的章节探讨了这些原理在心脏和神经电生理学中的应用,其中包括有关膜生物物理学最新发展的一章。该领域通过实验研究,理论概念和数学描述取得了长足的进步,最终为解决各种电生理问题提供了基础。
布鲁格达综合征 (BrS) 是一种致命的心律失常,在高发地区约占所有猝死的 4%。SCN5A 编码心脏钠通道 Na V 1.5,并导致 25% 至 30% 的 BrS 病例。本文,我们报告了一种 BrS 敲入 (KI) 小鼠模型 (Scn5a G1746R/+)。杂合 KI 小鼠重现了 BrS 的一些临床特征,包括心电图上的 ST 段异常(明显的 J 波)和自发性室性心动过速 (VT)、癫痫发作和猝死。VT 是由心脏动作电位时限缩短和 3 期晚期早期后去极化引起的,同时伴有钠电流密度 (I Na) 降低以及 Kcnd3 和 Cacna1c 表达增加。我们开发了一种基因疗法,使用腺相关病毒血清型 9 (AAV9) 载体介导的 MOG1 递送来上调 MOG1,MOG1 是一种与 NaV 1.5 结合并将其运送到细胞表面的伴侣分子。之所以选择 MOG1 进行基因治疗,是因为 SCN5A 编码序列 (6048 个碱基对) 很大,超过了 AAV 载体的包装能力。AAV9-MOG1 基因疗法增加了 NaV 1.5 和心室 I Na 的细胞表面表达,逆转了 Kcnd3 和 Cacna1c 表达的上调,使心脏动作电位异常正常化,消除了 J 波,并阻断了 Scn5a G1746R/+ 小鼠的 VT。基因疗法还挽救了具有 SCN5A 突变 p.D1275N 的杂合人源化 KI 小鼠的心律失常和收缩功能障碍的表型。使用小型伴侣蛋白可能对于靶向超出 AAV 载体大小容量的致病基因具有广泛的意义。
在这项研究中,我们报告了一种可柔性的4通道微电极探针,该探针涂有高度多孔和可靠的纳米复合材料的聚(3,4-乙基二氧噻吩)(PEDOT)(PEDOT)和碳纳米纤维(CNF),作为固体掺杂模板,用于固体掺杂模板,以实现高强度录制效果。通过原位电化学聚合技术开发了一种简单而良好的控制策略,该技术在灵活的4通道金微电极探针上创建PEDOT和CNF的多孔网络。不同的形态和电化学特征表明,它们具有显着且优异的电化学特性,产生了相结合高表面积,低阻抗(16.8±2mΩ.mmghz时2 kHz)和升高的电荷入口功能(超过那些pure and Pure dup pul of Pude)的微电化学特性。此外,PEDOT-CNF复合电极表现出延长的双相电荷周期耐力,导致长期电刺激的物理分层或降解可忽略不计。在小鼠脑切片上进行体外测试表明,它们可以记录自发的振荡场电位以及单单元的动作电位,并允许安全地提供电刺激以唤起磁场电位。 PEDOT-CNF复合电极的组合上级电性能,耐用性和3D微结构拓扑表现出开发未来神经表面接口应用的杰出潜力。在小鼠脑切片上进行体外测试表明,它们可以记录自发的振荡场电位以及单单元的动作电位,并允许安全地提供电刺激以唤起磁场电位。PEDOT-CNF复合电极的组合上级电性能,耐用性和3D微结构拓扑表现出开发未来神经表面接口应用的杰出潜力。
由模拟大脑生物电信息处理的忆阻器构建的神经形态系统可能会克服传统计算架构的限制。然而,仅靠功能模拟可能仍无法实现生物计算的所有优点,生物计算使用 50-120 mV 的动作电位,至少比传统电子设备中的信号幅度低 10 倍,以实现非凡的功率效率和有效的功能集成。因此,将忆阻器中的功能电压降低到这种生物幅度可以促进神经形态工程和生物模拟集成。本综述旨在及时更新这一新兴方向的努力和进展,涵盖设备材料成分、性能、工作机制和潜在应用等方面。
摘要 — 本信介绍了一种用于多通道宽带神经信号记录的能量和面积高效的交流耦合前端。所提出的单元使用基于反相器的电容耦合低噪声放大器调节局部场和动作电位,然后是每通道 10-b 异步 SAR ADC。单位长度电容器的调整可最大限度地减少 ADC 面积并放宽放大器增益,从而可以集成小型耦合电容器。与最先进的产品相比,65 纳米 CMOS 原型的面积缩小了 4 倍,能量面积效率提高了 3 倍,占位面积为 164 µ m × 40 µ m,能量面积性能系数为 0.78 mm 2 × fJ/conv-step。在 1 Hz 至 10 kHz 带宽内测得的 0.65 µ W 功耗和 3.1 µ V rms 输入参考噪声对应的噪声效率因子为 0.97。