抽象目标:冠状动脉疾病仍然是主要由动脉粥样硬化驱动的全球发病率和死亡率的主要因素。遗传变异和脂肪细胞因子(如omentin-1和瘦素)在炎症途径和动脉粥样硬化过程中起关键作用。本研究旨在评估巴基斯坦人口中CDX2(A> G)变体,Omentin-1和瘦素与CAD风险的关联。方法:这项病例对照研究包括500例血管造影确认的CAD患者和500名年龄和性别匹配的健康对照。从所有贡献者那里获得了详细的人体测量,血压和空腹血液样本。使用TETRA-PRIMER扩增耐火突变系统 - 聚合酶链反应(ARMS-PCR)进行CDX2(A> G)变体的基因分型。通过使用酶 - 连接的免疫吸附测定法(ELISA)试剂盒评估omentin-1,瘦素和维生素-D的血清水平。统计分析是由SPSS版本23进行的。结果:对照组中AA基因型的频率(49.2%)明显高于CAD患者(32.4%),表明具有保护作用(P <0.001)。Ag基因型与CAD风险增加58%(OR = 1.58,95%CI:1.24-2.02)。与对照组相比,CAD患者(368±3.7 ng/ml vs. 615±6.5 ng/ml,p <0.001)的血清Omentin-1水平明显低于615±6.5 ng/ml,p <0.001),而CAD患者的瘦素水平显着升高(8.62±0.7 ng/ml vs. 4.02 ng/ml vs. 4.02±0.5 ng/ml,p <0.5 ng 0.001)。omentin-1和瘦素水平都与Ag和GG基因型显着相关,这表明对这些脂肪细胞因子产生遗传影响。结论:总结VDRG的启动子区域的CDX2(A> G)变体与CAD的更大风险有关,并且对脂肪因子水平(尤其是Omentin-1和瘦素)的影响可能在CAD发病机理中起着至关重要的作用。这些发现提供了对CAD分子机制的见解。
合成生物学为工程生物系统提供了强大的工具,用于不同的应用。然而,在实现现实世界应用(例如环境生物修复或用于靶向药物的治疗微型机器人)之类的实际应用之前,主要的挑战一直存在。这项研究旨在通过在大肠杆菌中使用工程启动子调节基因表达来精确控制细菌运动。我们专注于模型生物的大肠杆菌,并通过工程化鞭毛蛋白的表达来操纵其运动,这是一种至关重要的细菌运动蛋白。为了实现这一目标,采用了特定的遗传启动子来调节鞭毛蛋白的产生,从而决定了这些细菌的运动能力。启动子启用了针对鞭毛蛋白表达的有针对性的调整,这反过来允许增强或抑制细菌运动。有趣的是,启动子设计参数与基因表达水平之间的关系是非线性的,突出了复杂的基础动力学。最佳细菌运动发生在30°C,说明了环境因素的影响。我们的发现证明了使用基因工程策略有效调节运动型等复杂微生物表型的能力。结果不仅扩展了我们对细菌基因调节的理解,而且还强调了合成生物学在创建各种生物技术应用中创建功能和适应性的微生物表型方面的变革潜力。
源自 Cas9 RNA 引导核酸酶的遗传工具为研究和改造细菌提供了必不可少的能力。虽然在 Cas9 应用于哺乳动物细胞的早期就已注意到脱靶效应的重要性,但由于细菌基因组较小,因此很容易避免 Cas9 在细菌基因组中的脱靶切割。尽管如此,一些研究报告了 Cas9 表达有毒的实验设置,即使使用催化失活的 Cas9 变体 (dCas9)。具体而言,dCas9 在与共享特定 PAM(原间隔区相邻基序)近端序列基序的引导 RNA 复合时具有毒性。在这里,我们证明这种毒性是由 Cas9 与必需基因启动子的脱靶结合引起的,脱靶基因的沉默发生在 PAM 近端序列中仅 4 个 nt 的同一性处。在大肠杆菌和其他肠细菌的各种菌株中进行的筛选表明,有毒向导 RNA 的性质会随着脱靶位置序列的进化而改变。这些结果凸显了 Cas9 可能与细菌基因组中数百个脱靶位置结合,从而导致不良影响。在设计和解释细菌中的 CRISPR-Cas 实验时必须考虑这一现象。
1实体瘤,病理学和癌症学的生物学实验室,中心医院的蒙彼利埃大学,法国34000蒙彼利埃; p-blateau@chu-montpellier.fr(p.b.); b-beganton@chu-montpellier.fr(B.B.); v-ducros@chu-montpellier.fr(V.D.); g-chauchard@chu-montpellier.fr(G.C.); j-vendrell@chu-montpellier.fr(J.A.V.)2 Institute for research in the Cancan é rologie de Montpellier, Inserm, University of Montpellier, Institut du Cancer de Montpellier, University of Montpellier, 34000 Montpellier, France 3 Laboratory Prot omique r e ponse in fl ammmattoire spectromé de mass (Prism), Inserm U1192, University Center,里尔(Lille),F-59000 Lille,法国; coyleud@gmail.com(E.C。); estellelaurent81@gmail.com(E.L。) *通信:j-soletol@chu-montpellier.fr;这样的。: + 33-467-33-58-71
感染后,人乳头瘤病毒 (HPV) 会操纵宿主细胞基因表达,以创造一个有利于有效和持续感染的环境。病毒诱导的宿主细胞转录组变化被认为是导致致癌的原因。在这里,我们通过 RNA 测序表明,致癌 HPV18 附加体在原代人类包皮角质形成细胞 (HFK) 中的复制会驱动宿主转录变化,这些变化在多个 HFK 供体之间是一致的。我们之前已经表明,HPV18 将宿主蛋白 CTCF 募集到病毒附加体中,以控制分化依赖性病毒转录程序。由于 CTCF 是宿主细胞转录的重要调节器,它通过协调表观遗传边界和长距离染色体相互作用,我们假设 HPV18 也可能操纵 CTCF 来促进宿主转录重编程。通过 ChIP-Seq 分析宿主细胞基因组中的 CTCF 结合情况,结果显示,虽然病毒不会改变 CTCF 结合位点的总数,但是有一部分 CTCF 结合位点要么富集要么缺乏 CTCF。许多这些改变的位点聚集在差异表达基因的调控元件内,包括抑制上皮细胞生长和侵袭的肿瘤抑制基因细胞粘附分子 1 (CADM1)。我们发现 HPV18 的建立会导致 CADM1 启动子和上游增强子处的 CTCF 结合降低。在没有 CpG 高甲基化的情况下,CTCF 结合的丧失与 CADM1 的表观遗传抑制同时发生,而包括转录调节因子 ZBTB16 在内的相邻基因则被激活。这些数据表明,在 HPV18 建立后,CADM1 基因座会发生拓扑重排。我们利用 4C-Seq(环状染色体确认捕获测序)测试了这一假设,并表明 HPV18 的建立导致
[3] 基因编辑技术的出现提供了一种更精确的方法,可以在特定的基因组位置有针对性地插入或修改调控元件。成簇的规律间隔的短回文重复序列/CRISPR 相关蛋白 9(CRISPR/Cas9)彻底改变了基因编辑领域,为研究人员提供了精确基因改造的有力工具。关键的突破出现在 2012 年,当时 Emmanuelle Charpentier 和 Jennifer Doudna 证明 CRISPR/Cas9 系统可以被编程来切割特定的 DNA 序列,为其作为基因组编辑工具的应用奠定了基础 [4] ,这一发现后来获得了 2020 年的诺贝尔化学奖。事实证明,这项技术对于研究基因功能和改良作物性状非常有价值。虽然 CRISPR/Cas9 已广泛用于基因敲除,但它在通过同源定向修复(HDR)进行基因上调方面的应用仍在发展,尤其是在水稻中 [5] 。基于 HDR 的基因编辑需要同时将 CRISPR/Cas9 表达系统和 DNA 修复模板递送到细胞中。该过程可以通过
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版本的版权持有人于2025年2月8日发布。 https://doi.org/10.1101/2025.02.07.636872 doi:Biorxiv Preprint
Zineb Sbihi、Kay Tanita、Camille Bachelet、Christine Bole、Fabienne Jabot-Hanin 等人。鉴定导致 XIAP 缺乏的 XIAP 基因中的种系非编码缺失揭示了关键启动子序列。临床免疫学杂志,2022 年,42 (3),第 559-571 页。�10.1007/s10875-021-01188-z�。�hal-03864194�
TBR225 是越南北部最受欢迎的商业水稻品种之一。然而,该品种极易感染细菌性叶枯病 (BLB),这是一种由水稻白叶枯病 (Xoo) 引起的疾病,会导致严重的产量损失。OsSWEET14 属于编码糖转运蛋白的 SWEET 基因家族。与其他 Clade III 成员一起,它表现为易感性 (S) 基因,该基因由亚洲 Xoo 转录激活因子样效应物 (TALE) 诱导对于疾病是绝对必要的。在本研究中,我们试图在 TBR225 优良品种中引入 BLB 抗性。首先,两种越南 Xoo 菌株被证明在 TBR225 感染后会上调 OsSWEET14。为了研究这种诱导是否与疾病易感性有关,利用 CRISPR/Cas9 编辑系统获得了九个 TBR225 突变体系,这些突变发生在 OsS-WEET14 启动子的 AvrXa7、PthXo3 或 TalF TALEs DNA 靶序列中。T 0 和 T 1 个体的基因分型分析表明,突变是稳定遗传的。三个无转基因 T2 编辑系的所检查农艺性状与野生型 TBR225 的性状均无显著差异。重要的是,其中一个 T 2 系含有最大的纯合 6 bp 缺失,显示 OsSWEET14 表达降低,对越南 Xoo 菌株的易感性显著降低,对另一个菌株完全抗性。我们的研究结果表明,CRISPR/Cas9 编辑赋予了越南商业精英水稻品种更高的 BLB 抗性。