表 7-2:已发布的报纸广告 ............................................................................................................................. 47 表 7-3 现场公告位置 ............................................................................................................................................. 48 表 7-4:提供给 IAP 的链接 ............................................................................................................................. 49 表 8-1 植被分类描述 ......................................................................................................................................... 52 表 8-2 草原类型和保护状况 ............................................................................................................................. 54 表 8-3 生态系统状况 ......................................................................................................................................... 54 表 8-4 外来入侵植物 ......................................................................................................................................... 54 表 8-5 研究区域中可能出现的需要保护的物种 ............................................................................................. 57 表 8-6 QDGC 2922CD 内可能发生的鸟类 SCC ............................................................................................. 58表 8-8 考古与遗产调查结果 ...................................................................................................................... 62 表 10-1 影响评价标准 ...................................................................................................................................... 70 表 10-2 持续时间标准描述 ............................................................................................................................. 71 表 10-3 程度标准描述 ............................................................................................................................. 71 表 10-4 强度标准描述 ............................................................................................................................. 71 表 10-5 后果标准描述 ............................................................................................................................. 72 表 10-6 概率标准描述 ............................................................................................................................. 72 表 10-7 置信度标准描述 ............................................................................................................................. 73 表 10-8 可逆性标准描述 ............................................................................................................................. 73 表 10-9 影响评价重要性评级 ................................................................................................................................................ 73 表 10-10 影响意义总结:植被群落退化和破碎化加剧 ...................................................................................................................................... 74 表 10-11 影响意义总结:外来入侵物种的引入和扩散 ...................................................................................................... 75 表 10-12 影响意义总结:动物群落的迁移、丧失和破碎化。 76 表 10-13 影响意义总结:鸟类群落的迁移、损失和破碎化 ...................................................................................................................................... 77 表 10-14 影响意义总结:接收空气质量条件的恶化 ...................................................................................................... 77 表 10-15 影响意义总结:噪音的产生 ...................................................................................................................... 78 表 10-16 影响意义总结:土壤污染和侵蚀 ............................................................................................................. 79 表 10-17 影响意义总结:当地道路上施工车辆交通增加 ............................................................................................. 80 表 10-18 后果标准描述:10.5.2.9 ........ 当地技能转移和可再生能源意识增强 81 表 10-19 影响意义总结:就业机会增加 ............................................................................................................. 82 表 10-21 影响意义总结:考古和/或古生物资源的损坏或破坏 ...................................................................................................................................................................... 82 表 10-22 影响意义总结:由于废物的管理和处理不当导致接收环境受到污染 ............................................................................................................................................. 83 表 10-23 影响意义总结:由于 BESS 故障导致本土植被的损失和流离失所 ............................................................................................................................................. 84 表 10-24 影响意义总结:由于 BESS 故障导致动物群和鸟类群落的损失和分裂 ............................................................................................................................. 86 表 10-25 影响意义总结:由于 BESS 故障导致周边社区和居民的健康状况下降 ........................................................................................................................................................................................................................ 87 表 10-26 影响意义总结:电线碰撞、触电和对鸟类群落的干扰 ............................................................................................................................................. 88 表 10-27 影响意义总结:危险化学品泄漏对土壤和地下水资源的污染 ............................................................................................................................. 88 表 10-28 影响意义总结:提高能源服务的可靠性和电网加强 ............................................................................................. 90 表 10-29 影响意义总结:由于安装 BESS 而导致的视觉美感变化 ............................................................................. 90 表 10-30 影响意义总结:本土植被的干扰和动物群落的迁移 ............................................................................. 91 表 10-31:意义总结:对减少气候变化的贡献 ............................................................................................. 91 表 10-32:意义总结:提高整个 Eskom 电网的能源效率 ............................................................................. 92 表 10-33 影响总结表:施工阶段:最坏情况评估 ................................................................................ 93 表 10-34 影响汇总表:运营阶段:最坏情况评估 ........................................................ 93 表 10-35 影响汇总表:累积影响:最坏情况评估 ........................................................ 9493 表 10-34 影响汇总表:运营阶段:最坏情况评估 .............................................................. 93 表 10-35 影响汇总表:累积影响:最坏情况评估 .............................................................. 9493 表 10-34 影响汇总表:运营阶段:最坏情况评估 .............................................................. 93 表 10-35 影响汇总表:累积影响:最坏情况评估 .............................................................. 94
会增强对微生物和生态系统对干扰的反应的基本理解(图1)。城市化对包括多种微生物组的地球化学,气候和生物群产生了巨大影响。尽管目前的城市地区占全球土地地区的0.5%(Schneider等,2009),但城市土地覆盖范围仍在不断扩大,这可能对环境健康和可持续性有很大的影响(Seto等,2012)。城市化会导致景观碎片,从而减少动植物的生物植物(Delaney等,2010; Liang等,2008; Su等,2011)。城市的光线和声音污染可以改变动物的行为,破坏物种的相互作用,并导致物种丰富度和成分的转变(Ciach&Fröhlich,2017; Firbaugh&Haynes,2016; Francis et al。,2009; Longcore&Rich,2004)。城市中的土壤通常被有机污染物和重金属污染。这些污染物可以压力植物,污染植物组织,影响土壤和传粉动物群落,并为人类居民带来健康风险(Hern Andez&Pastor,2008; Pan等,2018; Pavao-Zuckerman&Coleman,2007; Wang等,2013)。通过温室气体排放(Pichler等,2017),大气氮的沉积(Fenn等,2003)和水污染(Overbo等,2021; Wright等,2011)。同时,城市环境维持关键的生态系统过程。昆虫的花粉可以在城市景观中壮成长,这使它们成为城市保护工作的重点(Baldock等,2019; Hall等,2017)。例如,庞大的城市地区继续提供足够的栖息地,资源和途径来支持高水平的生物多样性(Angold等,2006; Wenzel等,2020)。城市绿色空间可以通过过滤空气,调节气候和放缓径流来帮助抵消城市化的影响(Bolund&Hunhammar,1999; McPhearson等,2015)。城市土壤支持养分循环过程,并使用适当的
摘要全球淡水生态系统的生物多样性由于各种人为压力源(例如栖息地降解,入侵物种的引入和污染)而面临严重威胁。评估人类引起的环境压力源对人群和社区持久性的影响需要准确的生物多样性估计。虽然环境DNA(EDNA)的质量编码已成为一种有前途的工具,但其在捕获生物组织(社区,人口和特异性水平)跨生物多样性响应中的有效性仍有待研究。在这项研究中,我们通过对基于草甘膦除草剂除草剂除草剂除草剂脉冲进行对比的养分水平(孕育和雌激素)进行了两个月的中核实验,测试了EDNA Metabarcoding在评估水生浮游动物和昆虫群落快速变化方面的疗效。我们检查了治疗对社区组合,家庭丰富性和种内多样性的影响,并将我们的发现与通过显微镜方法获得的结果进行了比较。元编码揭示了与显微镜的部分一致的生态发现,表明其在评估社区快速变化方面的潜力。除草剂引起的社区组成的转变以及差异影响的浮游动物和昆虫家族的丰富度(昆虫的增加,以及甲壳动物和旋转器的减少),这表明对类群中除草剂的宽容梯度以及昆虫幼虫的潜在自上而下的调节,这可能抵消了昆虫的优势。最后,我们表明养分富集加剧了除草剂对种内多样性的负面影响,从而突出了人们对遗传培养的关注。我们的发现强调了淡水生态系统中对除草剂和营养富集的反应的复杂性。我们得出的结论是,Edna Metabarcoding不仅可以用来估计无脊椎动物群落的快速变化,而且还可以通过对生物组织不同规模的多样性动态和潜在的级联效应提供更广泛的观点来获得额外的价值。
稀释效应假说(DEH)认为,更大的生物多样性降低了散发性的风险并降低了病原体传播的速度,因为更多样化的社区在任何给定的病原体中都有较少的胜任宿主,从而减少了宿主暴露于病原体。deh预计将在载体传播的病原体和物种富含物种的群落与宿主密度升高相关时最强烈地运作。总体而言,如果较大的物种多样性导致感染载体和易感宿主之间以及受感染的宿主和易感载体之间的接触率较低,则会发生稀释。基于现场的测试同时分析了与宿主和矢量多样性相关的几种多宿主病原体的流行才能验证DEH。我们测试了四种载体传播病原体的房屋麻雀(Passer fordayus)的患病率 - 三个禽流膜孢子虫(包括鸟类疟疾寄生虫疟原虫和类似疟疾的寄生虫的寄生虫造血和白细胞)和西尼氏病毒(WNV)(WNV)(WNV)的关系。鸟类在西班牙西南部的45个地区进行采样,其中存在有关媒介(蚊子)和脊椎动物群落的广泛数据。脊椎动物人口普查是为了量化禽和哺乳动物密度,物种丰富度和均匀度。与DEH,WNV血清阳性和血孢子虫患病率的预测相反,与脊椎动物物种的丰富度甚至均匀度都没有负相关。的确,发现了相反的模式,鸟类丰富度和WNV血清阳性之间存在正相关关系,并且检测到白细胞流行率。当将矢量(mos- quito)丰富性和均匀度纳入模型时,WNV患病率与脊椎动物社区变量之间的所有先前关联保持不变。在任何测试的模型中,尚未发现疟原虫患病率和垂直社区变量的显着关联。尽管研究的系统具有多种特征,这些特征应有利于稀释效应(即,载体传播的病原体,
•未来的公园和公共开放空间和步道•供水流域中的主要和威胁农田•重要的自然地区和野生动植物栖息地•分水岭的河岸缓冲土地,以及•具有意义的文化和历史遗址,具有重要意义的遗产遗产与有兴趣保护自己的土地的土地所有者一起工作。所有项目都是自愿的。完全购买了一些物业,以服务于特定的公共目的,例如公园或自然保护区,与采用的县计划一致。通过该计划保护的大多数财产都是通过保护地役权来完成的 - 县与土地所有者之间的永久法律协议,该土地仍然是私人所有权。要获得保护地役权的资格,该财产必须具有特殊的“保护价值”,其保护将提供有意义且持久的公共利益。在大多数情况下,该属性具有多个保护值。许多土地所有者在继续拥有和管理土地的能力方面受益最大,否则他们将遇到财务困难,同时永久保护土地及其资源。努力已经增加了,以更明确地将多样性,公平,包容性和正义(DEIJ)纳入土地保护,并继续建立与努力增强自然和文化资源土地的群体和组织之间的现有关系,以增强Deij环境中历史悠久的社区之间的自然和文化资源土地。同样,该县的许多保护目标是共生的,以解决气候变化的努力,并反映在新的气候行动计划中。保护优先级也应与气候变化目标保持协同作用。项目,以评估保护对这些价值的重要性。排名标准包括几个因素,包括但不限于供水流域,主要和威胁的农田,自然遗产地区以及历史或文化价值的地点。这些因素中的许多因素对于州和联邦赠款标准也非常重要,并且被认为是州资助矩阵的优先事项。例如,北卡罗来纳州自然遗产区域的库存的出现非常好。这些地区是罕见和独特的植物和/或当地,区域或全州意义的动物群落的发生。这些站点在项目中的存在等同于重要的积分和可能的资金排名。
北方泥炭地是碳循环的重要生态系统,因为它们将世界的1/3储存在全球陆地的约3%中。这种高碳存储能力使它们成为全球气候变暖引起的增加碳排放的关键缓解策略。在泥炭地等高碳储存系统中,土壤动物群落是有机物和营养循环的次要分解的,这表明它们在碳循环中起着重要作用。实验表明,变暖会以可能将泥炭地从碳水槽转移到来源的方式影响植物和微生物群落。尽管以前的研究发现气候变化操纵对土壤群落的影响可变,但预计变暖将主要通过降低水分含量来影响土壤社区的组成,而升高的CO 2大气浓度只有间接而弱,而弱的大气浓度则是如此。在这项研究中,我们使用了一个大型泥炭领域的实验来测试土壤微动脚类(Oribatid和Mesostigmatid mite,以及Collembolan物种的丰度,丰富性,丰富性和社区成分)对一系列实验性温暖温度(在0°C和+9°C之间的跨度)中响应4年,以响应4年的环境。 (云杉)实验。在这里,我们发现变暖显着降低了表面泥炭湿度,这又减少了物种微促动物的丰富度和丰度。特别是在较低的湿度水平下,oribatid和中骨螨,胶状和整体微促动物的丰富度显着降低。此外,在较高的水分水平下,大量的微肢体数量增加。在一起分析或分开时,均未影响微量关节脚架,除了在变暖下显着增加的中骨质体。 在社区层面,随着时间的流逝(除Collembolans除外),社区的变化很大,并且水分是解释社区物种组成的重要驱动力。 我们期望云杉实验治疗对土壤动物生物多样性的累积和互动效应继续出现,但我们的结果已经表明效果是均未影响微量关节脚架,除了在变暖下显着增加的中骨质体。在社区层面,随着时间的流逝(除Collembolans除外),社区的变化很大,并且水分是解释社区物种组成的重要驱动力。我们期望云杉实验治疗对土壤动物生物多样性的累积和互动效应继续出现,但我们的结果已经表明效果是
红树林是高效的生态系统,可从大气中捕获大量二氧化碳。大气中的co是通过沿海植物通过光合作用捕获的,然后将其隔离为有机物数百年。此过程可以降低大气中的浓度,而存储的碳通常称为“蓝色碳。作为蓝色碳的主要水槽,红树林对缓解气候的贡献很大。该碳作为生物量在红树林中存储在红树林中,或者在沉积物中存储,或者以有机和无机碳的形式出口到附近的沿海地区。红树林的净初级生产力(NPP)估计约为208 tg c yr -1。红树林在20 - 30年内达到了稳定状态。这种平衡是通过连续的生长和衰减循环维持的。假设生物量的碳密度无增加,则必须通过等效损失来平衡固定为净初级生产力(NPP)的碳。该碳被保留在沉积物中的红树林(77%),站立的生物质(15%的芽,叶子,树干和根中)和8%的地下根系系统中。碳被导出到相邻的生态系统中,作为垃圾,颗粒有机碳(POC),溶解的有机碳(DOC)和溶解的无机碳(DIC)或释放到大气中。外来假设认为,局部衍生的有机碳(POC)和溶解的有机碳(DOC)的出口是红树林提供的关键生态系统服务。这种出口的有机物燃料在邻近沿海栖息地中基于碎屑的食物网。估计表明,红树林碳的出口显着促进了这些相邻生态系统的营养结构。质量平衡评估证实了出口理论,表明红树林固定的碳通常超过森林本身中存储的数量。然而,这种出口的大小在不同的红树林之间有很大差异,受到沿海地貌,潮汐状态,淡水投入和生产力等因素的影响。沉积速率迅速,导致碳封存明显。随着时间的流逝,红树林建立了大量的土壤剖面,为各种微生物和动物群落创造了栖息地。数十年来,在泥flat泥的初步定殖后,红树林经历了发展和垂直积聚,适应了海平面的波动,沉降和隆起。此过程导致数米的土壤积累。随着时间的推移,这些沉积物被红树林根,各种植物(例如微藻),动物群(尤其是挖洞的螃蟹)和多样的微生物群落进一步渗透。森林地板变成了丘,洞穴,试管,裂缝,裂缝和各种根结构的复杂矩阵,并层层有有机物,epifauna,以及多样的微藻和大藻类。复杂的生物地球化学过程控制着红树林和相邻潮汐水之间溶解和颗粒物的交换,受潮汐