本研究提出了计算机视觉技术的新应用,用于识别ALS拥挤的加速器隧道中的磁铁和磁铁组件。利用SAM2/YOLO跟踪,我们培训了一个系统,结合了CAD渲染和来自Advanced Light Source升级(ALSU)项目的组件的真实照片。我们的方法涉及创建一些手动标记的图像的综合数据集,这些图像源自CAD模型和现场手动标记的照片。我们在简化维护程序,增强安全协议并改善了复杂加速器环境中自动化视觉检查和库存管理方面的总体操作中显示了潜在的应用。
精确操作是指机器人在综合环境中表现出高度准确,细致和灵活的任务的能力[17],[18]。该领域的研究重点是高精度控制和对动态条件的适应性。使用运动学模型和动态模型以实现结构化设置中的精确定位和组装[19],依靠刚性机械设计和模型驱动的控制依赖于刚性机械设计和模型驱动的控制。最近,深度学习和强化学习改善了动态环境中的机器人适应性[20],[21],而视觉和触觉感应的进步使千分尺级的精度在握把,操纵和组装方面[22]。此外,多机器人协作还允许更复杂和协调的精确任务。尽管取得了重大进展,但在多尺度操作整合,动态干扰补偿和低延迟相互作用中仍然存在挑战[23]。未来的研究应进一步改善交叉模态信息的实时对齐,并增强非结构化环境中机器人视觉的鲁棒性,以优化精确的操纵能力。
研究文章|行为/认知在稳定固定和主动视觉期间的刺激特征的表示https://doi.org/10.1523/jneurosci.1652-24.2024收到:2024年9月1日修订:2024年11月7日接受:2024年11月25日接受:2024年11月25日,2024年2月25日Moran Moran Et an。这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
方法:方法:前瞻性单中心队列研究,评估了一种新颖的互动教育视频模块(EVM)对提供者对AUD治疗的影响。EVM讨论了治疗,动机访谈(MI)和减少伤害策略以及案例示例。EVM托管在我们医院的网站上,并在内科,家庭医学,精神病学和胃肠病学/肝病学部门内所有提供者(教职员工和从业人员)提供。EVM是可选的,但是使用继续医学教育(CME)学分激励参与者。预/后调查请求反馈并评估1)AUD治疗知识,2)舒适开处方药,3)对MI的信心。匹配的响应。
摘要 - 我们提出了Roboverine,这是一种自然主义环境中选择性视觉注意力和场景语法的神经动态机器人主动视觉过程模型。该模型解决了视觉注意的认知机器人模型的重大挑战:结合自下而上的显着性和上下功能指导,公开和掩盖的关注,坐标转换,抑制回报的两种形式,在相机框架之外找到对象,集成空间和基于对象的分析和基于对象的分析,基于空间和基于对象的探索,几乎没有识别的在线学习和自定义的探索和自定义,并自动切换和自定义。此外,它结合了场景语法的神经过程帐户 - 关于场景中对象之间关系的先验知识,以降低搜索空间并提高搜索效率。该模型还展示了桥接两个框架的强度:用于特征提取的深神经网络和用于认知操作的动态场理论。
人类视觉皮层分为背侧、侧侧和腹侧流。一个长期存在的假设 10 是,功能组织成流是为了支持不同的视觉行为。在这里,11 我们使用基于神经网络的计算模型和大量 fMRI 数据集来测试视觉 12 流出现的原因。我们发现,针对特定流的视觉行为训练的模型很难捕捉神经 13 反应和组织。相反,自我监督的拓扑深度人工神经网络鼓励附近的单元做出类似的反应,成功地预测了神经反应、空间隔离 15 和跨流的功能分化。这些发现挑战了主流观点,即流 16 进化为分别支持不同的行为,而是表明功能组织源于一个单一原则:平衡从视觉输入中学习普遍有用的表示与 18 局部空间约束。19
摘要 - 模仿学习在使用相机的视觉反馈执行高精度操纵任务方面具有巨大的潜力。但是,在模仿学习的常见实践中,将摄像机固定在适当的位置,从而导致遮挡和有限的视野等问题。此外,摄像机通常被放置在宽阔的一般位置,而没有特定于机器人任务的有效观点。在这项工作中,我们研究了主动视力(AV)对模仿学习和操纵的效用,在该工作中,除了操纵政策外,机器人还从人类的演示中学习了AV政策,以动态地改变机器人的相机观点,以获取有关其环境和给定任务的更好信息。我们介绍了AV-Aloha,这是一种带有AV的新型双层远程处理机器人系统,AV的扩展是Aloha 2机器人系统的扩展,并结合了一个仅携带立体声摄像机的额外的7多型机器人臂,仅负责找到最佳视图点。此相机将立体视频流向戴着虚拟现实(VR)耳机的操作员,使操作员可以使用头部和身体运动来控制相机的姿势。该系统提供了具有双层第一人称控制的身临其境的远程操作体验,从而使操作员能够动态探索和搜索场景并同时与环境进行交互。我们在现实世界和模拟中对系统进行模仿学习实验,这些任务强调观点计划。项目网站:https://soltanilara.github.io/av-aloha/我们的结果证明了人类引导的AV在模仿学习中的有效性,显示了可见性有限的任务中固定相机的显着改善。
Pytorch,Pytorch Lightning和OpenCV。在此过程中提取了输入文本中的上下文信息,然后将信息转换为视觉组件。这项工作的主要目标是研究如何将语言和视觉线索组合在一起,以制作精确传达文本材料的电影,同时还可以显示风格的细节。该系统的关键组成部分,样式传输使当前的视觉样式采用了生产的视频,从而产生了令人惊叹的结果,以示例创意美学。该系统旨在通过各种样式证明其方法论在视频制作中的有效性,从而展示创新和定制的可能性。这项工作有助于随着人工智能和多媒体继续融合内容的融合,从而有助于不断变化的环境,这是通过对语言和视觉之间的相互作用所带来的机会来融合的。这项研究通过展示文本到视频生产的功能与样式转移的能力,强调了AI驱动的多媒体合成的游戏可能性不断变化的可能性。
抽象驾驶员的注意是安全驾驶和避免可能发生事故的关键要素。在本文中,我们提出了一种新的方法,可以解决驱动程序中视觉注意力估计的任务。我们引入的模型由两个分支组成,一个分支执行凝视点检测以确定驾驶员的确切焦点,另一个执行对象检测以识别道路上的所有相关元素(例如车辆,行人和交通标志)。两个分支的两个输出的组合使我们能够确定驾驶员是否专注,并最终确定他们集中的道路元素。测试了两个模型的目光检测任务:GAZECNN模型和由CNN+变压器组成的模型。对两种模型的性能进行了评估,并将其与其他最先进的模型进行比较,以选择最佳的任务方法。最后,报告并分析了DGAZE数据集上3761对图像(驱动程序视图和相应的道路视图)进行的视觉注意估计结果。