两片石墨烯以扭曲的方式堆叠在一起,形成一个系统,该系统最近引起了人们的极大兴趣,因为它具有令人着迷的电子特性,这些特性通常出现在由此产生的莫尔超晶格的尺度上,而莫尔超晶格通常比石墨烯晶格常数大 10 到 100 倍。特别是对于小的扭曲角度,莫尔超晶格常数在 10-20 纳米范围内,这使得扫描探针显微镜 (SPM) 成为研究扭曲双层系统的理想工具。通过本应用说明,我们展示了具有纳米级横向分辨率的 attoAFM I 低温显微镜如何配备先进的 AFM 模式,如导电尖端原子力显微镜 (ct-AFM) 和压电响应力显微镜 (PFM),可用于探索扭曲双层的电气和机电特性。
成就 60 多年来,LLNL 的研究人员和同事们一直致力于实现聚变点火,这是科学界最具挑战性的目标之一。2022 年 12 月 5 日的一项实验通过了这一历史性里程碑,为 HED 科学开辟了新前景,并使我们能够获得与未来库存管理相关的新机制。 为了支持 HED 科学,LLNL 开发了多种诊断方法,这些方法对于在短时间尺度上以及在高密度和高温下测量材料特性是必不可少的。 LLNL 的研究人员开发了高速摄像机,使用能够探测超致密材料的 x 射线,以优于 1/10 纳秒的时间分辨率创建实验的“电影帧”。 能够使用晶体 x 射线散射测量材料结构变化的仪器使科学家能够更新固体转变模型。 利弗莫尔的研究人员还利用机器学习和人工智能等新兴科学领域来提高 HED 模拟能力。
世界上首要的高性能计算设施之一劳伦斯·利弗莫尔(Lawrence Livermore)是Livermore Computing(LC)的所在地,这是一家首要的高性能计算设施。LC拥有200多个PETAFLOP的计算能力和许多Top500系统,包括125-Petaflop Sierra系统。继续世界一流的LLNL超级计算机的血统,塞拉代表了Exascale Computing道路上的倒数第二步,预计将通过称为El Capitan的LLNL系统在2023年实现。这些旗舰系统具有GPU的支持,并以3D的形式在从未见过的各种任务需求的情况下进行了多物理模拟。在2020年,LLNL和小脑系统将世界上最大的计算机芯片集成到Lassen系统中,并使用尖端的AI技术升级顶级超级计算机。这种组合创造了一种根本新型的计算解决方案,使研究人员能够研究新颖的预测建模方法。这些平台得到了我们的LEED认证,创新的基础设施,权力和冷却设施的支持;一个存储基础架构,包括三种文件系统和世界上最大的tfinity磁带档案;和顶级客户服务。我们的行业领先的软件生态系统展示了我们对许多大型开源工作的领导,从与光泽和ZFS一起抛弃到R&D 100屡获殊荣的Flux,SCR和SPACK。
UNIT-I 微处理器的演变,RISC 与 CISC 的比较 8085 简介:微处理器发起的操作和总线组织、内部数据操作、8085 寄存器、外部发起的操作、存储器组织、映射和类型 - I/O 寻址类型、存储器映射 I/O、功能块、引脚图、指令和时序、指令分类。(10)UNIT-II 编程与架构、8085 指令集、编程技术、堆栈和子程序、中断及其类型、简单的说明性程序。(8)UNIT-III 数据传输方案、可编程外围设备简介(8255A、8257、PIC 8259、USART 8251)以及 PPI 8255 与 8085 处理器的接口。(8)UNIT-IV 8086 简介、架构、寻址模式、引脚图及其最小/最大配置。 (6) 先进处理器简介(386、486 和奔腾处理器)简介 - MMX 技术。UNIT-V 微处理器、微控制器和嵌入式系统、8051 微控制器之间的比较:引脚图、架构、寻址模式、指令集、微控制器的应用。嵌入式系统的内部和外部存储器。 (8) 教科书:1. Ramesh Goanker,《微处理器与接口 - 编程与硬件》。
2023 年 7 月 2 日,亚当·阿伯尔先生被任命为陆军执行服务部门的陆军定向能高级顾问。作为定向能高级顾问,阿伯尔先生提供专业和行政监督,以确保定向能武器系统和陆军定向能企业的开发和原型设计同步并充分参与。他负责确保陆军在定向能领域的科学与技术 (S&T) 和原型设计工作之间实现协调和沟通。此前,阿伯尔先生曾担任美国陆军空间与导弹防御司令部 (SMDC) 技术中心定向能理事会主任。在这个职位上,他负责协调与陆军未来司令部、陆军助理部长 (采购、后勤和技术)、陆军研究实验室以及快速能力和关键技术办公室的定向能 S&T 研究工作。曾任的职务包括 SMDC 技术中心高能激光部门主管、SMDC 技术中心高能激光移动测试卡车和强大电动激光计划的技术总监。