振动极性子是通过光腔中分子振动和光子模式的强耦合形成的。实验表明,振动强耦合可以改变分子特性,甚至会影响化学反应性。然而,分子集合中的相互作用是复杂的,并且尚未完全了解导致修饰的确切机制。我们基于双量子相干技术模拟了分子振动极化子的二维红外光谱,以进一步深入了解这些混合光 - 制成状态的复杂多体结构。双重量子相干性独特地分辨出杂交光 - 偏振子的激发,并允许人们直接探测所得状态的非谐度。通过将腔体出生的腔体 - oppenheimer hartree -fock ansatz与相应特征状态的完整量子动力学模拟结合在一起,我们超越了简化的模型系统。这使我们能够研究自动极化的影响以及电子结构对腔体相互作用在光谱特征上的响应,甚至超出了单分子情况。
携带轨道角动量 (OAM) 的表面等离子体极化子,即等离子体涡旋,在光学捕获、量子信息处理和通信领域引起了广泛关注。先前对近场 OAM 的研究仅限于产生单个等离子体涡旋,这不可避免地降低了进一步的片上应用。几何超表面是超材料的二维对应物,具有前所未有的操控电磁波相位、偏振和振幅的能力,为控制等离子体涡旋提供了灵活的平台。在这里,我们提出并通过实验演示了一种基于几何超表面实现太赫兹 (THz) 等离子体涡旋复用的方法。在圆偏振 THz 波的照射下,在金属/空气界面处产生多个具有相同拓扑电荷的等离子体涡旋。此外,还展示了从自旋角动量到多个等离子体 OAM 的转换,即具有不同拓扑电荷的多个等离子体涡旋。由具有不同平面方向的成对空气缝组成的几何超表面旨在展示这些特性。我们提出的方法可能为信息容量不断增加的片上应用开辟一条道路。
在RESTSTRAHLEN区域,横向和纵向声子频率之间,极性介电材料对光线响应,而所得的强光 - 分子相互作用会导致形成称为表面声子极化子的混合型准颗粒。最近的工作表明,当光学系统包含纳米级极元素时,这些激发可以作为晶格的材料分散剂的结果,从而获得纵向场成分,从而导致形成了被称为纵向横向极化子的次级准粒子。在这项工作中,我们建立在以前的宏观电磁理论的基础上,开发了完整的纵向透明偏振子的第二次量化理论。从光 - 一种系统的哈密顿量开始,我们将失真对待晶格,引入弹性自由能。然后,我们将哈密顿量对角线化,表明偏振子的运动方程相当于宏观电磁作用,并量化了非局部运算符。最后,我们演示了如何根据极化状态重建电磁场并探索北极星诱导的Purcell因子的增强。这些结果证明了非局部性如何狭窄,增强和频谱调整近场发射,并在中红外传感中应用。
近年来,基于热激活延迟荧光 (TADF) 发射器的高效有机发光二极管 (OLED) 已经实现,但器件寿命需要进一步提高才能用于实际显示或照明应用。在这项工作中,通过调节单层未掺杂器件的光学腔,提出了一种器件设计原理,以实现高效、长寿命的 TADF OLED。通过增加发射层厚度将腔长延长至二阶干涉最大值可拓宽复合区,同时光学输出耦合效率仍然接近较薄的一阶器件。此类器件设计可得到高效稳定的单层非掺杂 OLED,其最大外量子效率为 16%,LT 90 为 452 小时,初始亮度为 1000 cd m − 2 时 LT 50 为 3693 小时,是一阶 OLED 的两倍。进一步证明,OLED 寿命和光强度之间广泛使用的经验关系源自三线态极化子湮没,从而推算出 100 cd m − 2 时的 LT 50 接近 90 000 小时,接近实际背光应用的需求。
但从 1992 年开始,我开始研究涉及量子隧道传输现象的下一代技术。从那时起,我的研究主要集中在下一代技术上:首先是量子隧道器件,然后是量子点,后来是基于伪表面等离子体极化子的新兴技术。所以我可以说,过去 25 年来,我一直在为下一代技术而努力。在攻读博士学位之前,我已经积累了六年的工业研发经验。我没有利用我的工业背景来做当前一代的工作,而是转向了下一代问题。当我撰写博士论文时,它比内存技术曲线略超前一点,因为内存芯片制造商没有意识到未来一代 DRAM 芯片的测试成本方面会有什么问题。当时的测试社区开始认识到 DRAM 芯片的测试复杂性,因为集成密度超过了每芯片 1 兆位。在我完成论文并展示了一种经济高效的 DRAM 芯片测试方法的六年后,内存制造商开始使用我在论文中开发的可测试性设计技术。因此,从某种意义上说,自从 1985 年我开始攻读博士学位以来,“纳米”这个词就成了我研究的一个愿景。
X射线 - 形式的相互作用本质上是弱的,X射线的高能量和动量对应用强光 - 耦合技术构成了巨大的挑战,这些耦合技术在更长的波长中非常有效地控制和操纵辐射。技术,例如在金属丝接口处或纳米结构内的光和电子之间增强的耦合,以及purcell效应(在金属表面附近自发发射,因此由于其根本不同的能量和动量尺度而不适用于X射线。在这里,我们提出了一种新的方法,用于通过将X射线光子与紫外线(UV)中的spps纠缠到铝制的自发参数下偏见(SPDC)中,将X射线耦合到表面等离子体极化子(SPP)。如本工作所示,SPP的不同特征印在检测到的X射线光子的角度和能量依赖性上。我们的结果突出了使用spps控制X射线的潜力,从而解开了激动人心的机会,以增强X射线 - 物质相互作用并探索具有原子尺度分辨率的等离子现象,这是X射线独特启用的功能。
甲烷古细菌在全球碳循环中起着重要作用,可以作为CO 2和其他一碳基质的燃料和化学物质生物技术生产的宿主生物。甲藻菌的乙酰硫酸酯因其较大的基因组,多功能底物范围和可用的遗传工具而被广泛研究为甲烷原模型。也已经证明了通过CRISPR/CAS9在M. acetivorans中进行基因组编辑。在这里,我们描述了一个用户友好的CRISPR/CAS12A工具箱,该工具箱识别富含T的PAM序列。该工具箱可以管理3,500 bp(即淘汰整个Frhadgb操纵子)和异源基因插入的缺失,正率超过80%。cas12a介导的多重基因组编辑用于在一轮编辑中编辑染色体上的两个单独的位点。达到了100 bp的双重删除,正确编辑了8/8的转化子。在一个位置同时删除100 bp,并用2,400 bp的UIDA表达盒在另一个位置替换100 bp,可在单独的位置上获得5/6个正确编辑的转换物。我们的CRISPR/CAS12A工具箱可实现可靠的基因组编辑,并且可以与先前报道的基于CAS9的基于CAS9的系统并行使用,用于甲状腺素物种的基因工程。
近年来,量子纳米光子学领域蓬勃发展,人们对新理论、新器件和新应用的开发兴趣浓厚。“量子纳米光子学”特刊通过评论、观点和研究论文重点介绍了该主题的一些最新进展。本期包含评论和观点文章,全面概述前沿主题。Chang 和 Zwiller [1] 回顾了使用纳米线的集成量子光子学的最新进展,重点介绍了集成发射器、探测器和制造方法。这篇评论还介绍了基于纳米线的量子信息处理和传感应用。Gali [2] 总结了从头算理论,以充分理解固态量子比特,它是量子光子装置中的重要组成部分。该计算方法已应用于激发态、光电离阈值、光激发光谱、有效质量态和自旋动力学的计算。这种方法可以提供超越传统密度泛函理论的洞见,因为传统密度泛函理论无法完全捕捉激发态的特性。生物技术正被用于各种量子光学和光子学,反之亦然。DNA 纳米技术利用 DNA 信息设计和制造用于技术用途的人工核酸结构,已被用于量子发射器领域。DNA 的奇异特性使我们能够在分子水平上抓住量子发射器并控制它们的指向器。Cho 等人 [3] 对相关研究进行了广泛的综述。相反,对量子光学中光物质相互作用的理解为研究化学和生物过程提供了提示。Kim 等人 [4] 综述了基于光与物质与光学谐振器相互作用的丛激子和振动极化子强耦合。作者从强耦合的基本原理、丛激子的结构和特性以及在化学和生物检测中的应用进行了介绍。Kim 等人 [5] 对基于光与物质相互作用的丛激子和振动极化子强耦合进行了综述。 [ 5 ] 讨论了纳米光子共振工程可以实现接近 1 的读出保真度,而这对于提高 NV 量子传感的灵敏度是必需的。该观点深入了解了 NV 量子传感的背景、共振结构的应用以及实际传感中剩余的挑战。Zheng 和 Kim [ 6 ] 讨论了钙钛矿基发光二极管的衰减机制。衰减可能发生在外部和内部过程中,从而对性能和稳定性产生不同影响。其中包括各种关于量子纳米光子学的研究文章。人们对优化可集成到光子电路中并实现实际应用的单光子发射器 (SPE) 的兴趣日益浓厚。Azzam 等人。[7] 展示了使用介电腔对 WSe 2 SPE 的 Purcell 增强。介电腔在 WSe 2 上施加定向应变分布,可以选择性地控制 SPE 的极化状态。徐等人 [8] 报道了一种基于纳米金刚石 (ND) 的高纯度 SPE,其硅空位 (SiV − ) 中心带负电,采用离子注入法。他们成功地阻止了 SiV − 发射极
碳聚合物广泛应用于航空航天、电子、[1–4] 太阳能电池技术、[5–9] 太阳能水净化、[10] 电池(如超级电容器)[11–14] 和生物医学工程(如记录和刺激电极涂层、药物输送、组织工程支架)。[15–21] 这些聚合物固有的导电性来源于它们的化学结构,该结构由重复的单键和双键(π-π)碳键交替链组成,允许电子沿着聚合物主链自由移动。此外,这些材料可以通过几种工艺(如化学、电化学、光子)进行掺杂,通过极化子的积累有效地提高它们的电导率。[22] 除了出色且可调的电性能外,碳聚合物还是一种经济高效的金属替代品,可生物降解、生物相容性好,可以通过多种工艺合成,并可以涂覆在不同类型的基材上。在研究最多的 CP 中,我们发现了聚吡咯 (PPy)、聚苯胺 (PANI) 和聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐 (PEDOT/PSS)。所有这些 CP 都已广泛应用于生物医学应用,用于生物电测量、电刺激、药物输送以及生物致动器和生物传感器。[23–27] 特别是,由于 PEDOT 的高电化学稳定性和三维结构,在过去十年中,将其用作刺激电极涂层一直是研究的中心。
对 T0 代植物进行无转基因基因组编辑是人们非常希望实现的目标,但同时也极具挑战性,尤其是在多年生植物和无性繁殖植物中。在这里,我们研究了通过农杆菌介导的胞嘧啶碱基编辑器 (CBE)/gRNA-Cas12a/crRNA-GFP 在植物体内瞬时表达来生成无转基因基因编辑植物的共编辑策略。具体而言,12 CBE/gRNA 用于碱基编辑 ALS 基因,从而赋予对除草剂氯磺隆的抗性,作为 13 选择标记,该抗性对植物表型没有负面影响;Cas12a/crRNA 用于编辑感兴趣的基因;GFP 用于选择无转基因转化子。使用 15 这种方法,可以在 T0 代中高效地针对番茄、烟草、马铃薯和柑橘中的各种基因 16 (单个或多个) 生成无转基因基因组编辑植物。除草剂抗性转化体中靶基因的双等位基因/纯合无转基因突变率在 8% 至 50% 之间。全基因组测序进一步证实了编辑植物中无转基因和无脱靶突变。共编辑策略对于在 T0 代中产生无转基因、基因组编辑植物是有效的,因此是植物遗传改良的有力工具。
