摘要:生物废水处理是各种微生物将有毒化学物质降解为小的、环境友好的分子的过程。鉴于传统的物理和化学净化方法成本高、不可持续且不具针对性,生物处理在废水处理领域发挥着越来越重要的作用。生物处理策略的有效实施在很大程度上依赖于微生物的内在降解能力及其与污染物的相互作用。在这篇综述中,我们将重点介绍生物催化剂和生物反应器层面上工程化和改进生物处理的最新技术进展。具体来说,我们将讨论合成生物学在增强生物吸附和生物转化方面的进展,以及在受污染场所应用工程微生物所面临的挑战。我们将进一步回顾生物反应器设计的最新发展,特别是增材制造/生物打印的前景,通过复杂的三维结构和灵活的材料选择进一步优化生物反应器内部的物质传输。这些研究工作重新定义了生物处理的前沿,为经济、高效、可持续的废水处理开辟了新的机遇。
摘要:生物废水处理是各种微生物将有毒化学物质降解为小的、环境友好的分子的过程。鉴于传统的物理和化学净化方法成本高、不可持续且不具针对性,生物处理在废水处理领域发挥着越来越重要的作用。生物处理策略的有效实施在很大程度上依赖于微生物的内在降解能力及其与污染物的相互作用。在这篇综述中,我们将重点介绍生物催化剂和生物反应器层面上工程化和改进生物处理的最新技术进展。具体来说,我们将讨论合成生物学在增强生物吸附和生物转化方面的进展,以及在受污染场所应用工程微生物所面临的挑战。我们将进一步回顾生物反应器设计的最新发展,特别是增材制造/生物打印的前景,通过复杂的三维结构和灵活的材料选择进一步优化生物反应器内部的物质传输。这些研究工作重新定义了生物处理的前沿,为经济、高效、可持续的废水处理开辟了新的机遇。
摘要:膜是化学净化、生物分离和海水淡化的关键部件。传统的聚合物膜普遍存在渗透性和选择性之间的权衡,这严重阻碍了分离性能。纳米多孔原子薄膜(NATM),如石墨烯 NATM,有可能打破这种权衡。由于其独特的二维结构和潜在的纳米孔结构可控性,NATM 有望通过分子筛获得出色的选择性,同时实现极限渗透性。然而,石墨烯膜的概念验证演示和可扩展的分离应用之间存在巨大的选择性差异。在本文中,我们提供了一种可能的解决方案来缩小这种差异,即通过两次连续的等离子体处理分别调整孔密度和孔径。我们证明,通过缩小孔径分布,可以大大提高石墨烯膜的选择性。首先应用低能氩等离子体来使石墨烯中高密度缺陷成核。然后利用受控氧等离子体选择性地将缺陷扩大为具有所需尺寸的纳米孔。该方法具有可扩展性,制备的具有亚纳米孔的 1 cm 2 石墨烯 NATM 可以分离 KCl 和 Allura Red,选择性为 104,磁导率为 1.1 × 10 −6 ms −1 。NATM 中的孔可以进一步从气体选择性亚纳米孔调整到几纳米尺寸。制备的 NATM 在 CO 2 和 N 2 之间的选择性为 35。随着扩大时间的延长,溶菌酶和牛血清白蛋白之间的选择性也可以达到 21.2,渗透性比商用透析膜高出大约四倍。这项研究提供了一种解决方案,可以实现孔径可调的 NATM,其孔径分布较窄,适用于从气体分离或脱盐中的亚纳米到透析中的几纳米的不同分离过程。关键词:纳米多孔石墨烯膜、纳米多孔原子级薄膜 (NATM)、蛋白质选择性膜、等离子蚀刻、纳米孔工程