金属磷化物纳米带因特殊的电子结构、大的接触面积和优异的力学性能而成为柔性光电子微器件的理想构建材料。本工作采用拓扑化学方法从结晶红磷纳米带(cRP NR)制备单晶磷化铜纳米带(Cu 3 P NR)以保留 cRP 形貌。Cu 3 P NR 用于在 ITO/PEN 基底上构建柔性光电忆阻器,以 Cu 3 P NR 的天然氧化壳作为电荷捕获层来调节电阻开关特性。基于 Cu 3 P NR 的忆阻器在不同机械弯曲状态和不同弯曲时间下均具有出色的非挥发性存储性能。从基于 Cu 3 P NR 的忆阻器中观察到光学和电学调制的人工突触功能,并且由于记忆回溯功能,使用 Ag/Cu 3 P/ITO 人工突触阵列实现了模式识别。拓扑化学合成法是一种通用方法,可用于生产具有特殊形态和特定晶体取向的纳米结构化合物。结果还表明,金属磷化物是未来光电神经形态计算的忆阻器中的优良材料。
摘要:使用连续的离子层吸附和反应(Silar)方法,将氧化物和氧化物基的电极的薄膜沉积在不锈钢基板上。X射线衍射(XRD)研究表明,底物上的无定形材料形成,并通过能量分散研究(EDS)证实了材料的组成。水接触角度测量显示了沉积材料的超吞噬表面。形态显示氧化摄氏类似于手指芯片型形态,而真菌喜欢和鳄鱼后生的形态,对于氧化氧化物氧化物氧化物和氧化物氧化物和氧化物氧化物 - 氧化物 - 氧化物 - 氧化物激活碳(AC)的复合。在0.2 m的非水力KCL电解质中进行了超级电容器施用的环状伏安测量。指定具有94.22°接触角的氧化物电极为106.25 f·g
作为RNA通常与DNA相比具有较短的半衰期,因此这些递送方法与较低的o级效应相关。9,10,化学修改的GRNA,11 - 15,以单个指南RNA(SGRNA)11的形式或两个成分的CRISPR RNA(crRNA)和反式激活CRRNNA(tracrrna),请积极研究12。为了促进精确的细胞内应用,例如基因编辑和调节,通过将RNA寡核苷酸为刺激性响应性修饰阳离子配备有条件地控制GRNA活性,包括对紫外线(UV)光线(UV)Light,16 - 30 Redox条件,31,32 Redox Cresement,31,32和Bio-orthal ofthalognogalognognognogalognognognognognognognogys和Bio-orthalogansognognognognognognogansognognognognognognognogansognogys。33 - 35这些模拟阳离子可以通过核糖2 0 -OH,18,24 - 26,31,34 - 37个核碱,17,21,27 - 29和内部或末端接头引入RNA。19,20,22,23,30,33,38
对于一些合成化学家来说,在有机化学和酶化学界面处挖掘优势是一项挑战。化学酶合成规划工具可以有效地帮助识别小分子制造中的生物催化机会。计算机辅助合成规划 (CASP) 中的逆合成技术通过从目标开始并递归选择适当的断开连接,提出了从可用起始材料到目标的可行多步合成路线。从 50 多年前提出的有机化学早期 CASP 工具开始,7,8 这些方法已经得到改进,可以使用基于规则的方法和机器学习来概括已知反应,从而预测达到所需目标的实际有机合成路线。9 – 11 酶逆合成的最新发展显示出为酶开发类似的 CASP 工具的巨大潜力。12 – 15 Finnigan 等人最近整理了一小组经过专业编码的反应规则来描述用于生物催化的酶工具箱。 13 这些反应规则隐含地反映了不同酶类已确定的底物混杂性。这些规则所代表的酶已被证明在许多情况下适合酶工程,以接受新的底物。13 此外,它们还被成功地用于规划针对目标分子的生物催化级联。尽管 RetroBioCat 成功地规划了多步酶促途径,但它无法提出针对所需目标的化学酶促途径,该途径协同涉及有机和酶促方法。
经过学术界几十年的开拓性研究,化学合成早已成为人类生活中不可或缺的一部分。1合成无处不在,一切能听到、看到、闻到、尝到和触摸到的事物都与合成有关。但更快、更安全、更经济、更有效地完成化学合成过程仍是全世界关注的问题。尽管如此,传统的研究方法可能效率不够高。2,3因此,人们提出利用人工智能技术来辅助化学合成。人工智能的基础是计算机器,而计算机器的理论和应用历史悠久,自上个世纪以来已逐渐应用于许多领域。1948年,克劳德·香农报告说信息可以用二进制系统编码,这开创了信息论领域,为数据科学与化学合成的融合奠定了基础。 4 随着电子技术的不断发展,人工智能算法也得到了越来越多的发展,因此其应用范围已不仅限于开发简单的工具。5 – 9 如图 1 所示,从 2000 年到 2021 年,人工智能与化学合成相结合的研究越来越多。尤其是在这五年间,无论发表量还是引用量,都呈指数级增长。目前,
1,3-丙二醇(1,3-PDO)是重要的有机化学材料之一,可广泛用于聚酯合成,并且在医学,化妆品,树脂和可生物降解的塑料中也显示出很大的潜力。到目前为止,1,3-PDO主要来自化学合成。然而,1,3-PDO化学合成过程中的副产品和副作用对环境造成了严重破坏。近年来,在微生物中阐明了1,3-PDO的生物合成途径。在甘油脱氢酶(GDHT)和丙二醇氧化还原酶(PDOR)的作用下,可以通过还原途径催化甘油形成1,3- PDO。与化学合成相比,1,3-PDO的生物合成是环保的,但会面临生产较低的问题。为提高产量,基因工程已经修改了天然的1,3-PDO产生菌株,并且在模型微生物Escherichia Coli中已重建了生物合成途径。在这篇评论中,我们总结了微生物中1,3-PDO生物合成的研究进度,希望它将为行业可再生生产提供1,3-PDO的参考。
1. Dellinger, DJ 等人,《使用 2'-O-硫代氨基甲酸酯保护的核苷亚磷酰胺在固相中化学合成 RNA 的简化流程》,《美国化学会志》133,11540– 11556 (2011);DOI:10.1021/ja201561z
·领导药物化学努力旨在优化一类新的RNA疗法的合成输送系统·识别和开发合适的分析方法,用于特征和验证·监督CRO/CDMO合作伙伴的化学合成活动·准备数字和作者手稿以提交给高影响力期刊