摘要:由于其在材料科学到生物医学的各个领域的潜在应用,近年来,氧化石墨烯(GO)的质量生产引起了极大的关注。石墨烯以其独特的特性而闻名,例如高电导率和机械强度,已被广泛研究。然而,传统的生产方法,例如用苏格兰胶带去角质不适合大规模生产。这使GO成为石墨烯生产的可行替代方案的关注越来越大。尽管如此,到目前为止尚未解决挑战,包括优化氧化过程,结构均匀性的控制以及生产的可重复性。这篇评论通过分析实验和机械研究来确定可实现适合工业规模生产的高收益和可重复的方法来确定重要的发展,从而对生产的进步进行了严格的研究。特别关注氧化技术和结合后的纯化和储存,重点是控制氧化以实现均匀和单层GO。通过此镜头,审查概述了GO工业化的前进道路,旨在弥合学术研究和工业生产之间的鸿沟。关键字:氧化石墨烯,石墨,化学氧化,电化学氧化,质量产生,纯化,优化,工业化,安全性,稳定性
减少的石墨烯氧化石墨烯由于其在开发广泛的应用设备方面的巨大潜力而引起了相当大的兴趣。合成还原石墨烯氧化石墨烯的关键特征是,不同的制备方法会导致具有不同特性的材料,进而影响其最终性能。在这里,我们描绘了两种简单的方法,可以从石墨粉中合成还原的氧化石墨烯。石墨氧化物是通过修饰的悍马方法通过石墨粉化的化学氧化来制备的。还原过程是通过化学和热液方法完成的,以达到最小残留氧功能。通过XRD,共聚焦拉曼,FTIR和SEM等表征工具进行了分析,该工具确认了还原氧化石墨烯的形成。尽管水热还原是具有成本效益和环境友好的,但与化学方法相比,该方法通过该方法氧化石墨烯是部分的。©2017 Elsevier Ltd.保留所有权利。在国际高级材料会议(Scicon ’16)的责任下进行选择和/或同行评审。
摘要:胞嘧啶修饰的选择性,有效和可控的氧化对于表观遗传分析很有价值,但仅进行了有限的进展。在这里,我们介绍了两个模块化化学氧化反应:使用4-乙酰胺-2,6,6,6-6,6-四甲基二甲基二甲基二甲基二氨基氨基氨基氨基氨基氨基氨基氨基氨基氨基氨基氨基氨基甲氨基甲甲基胞嘧啶(5HMC)转化为5-甲酰基胞嘧啶(5FC)(5FC) 5-羧基氨酸(5CAC)通过固定氧化。这两种反应在双链DNA上都是轻度且有效的。我们将这两种氧化与硼烷还原集成在一起,以开发化学辅助的吡啶硼烷测序加(CAPS+),以直接和定量映射的5hmc。与CAPS相比,CAP+提高了转化率和假阳性速率。我们将CAPS+应用于小鼠胚胎干细胞,人正常脑和胶质母细胞瘤DNA样品,并在分析羟甲基甲基甲基时表现出了较高的敏感性。
河流是重要的淡水资源,提供基本的生态服务,支持生物多样性,并作为国内,农业和工业用途的重要水源[1-3]。纳尔默达河是印度主要河流之一,具有重要的文化,经济和环境重要性[4,5]。起源于阿马尔坎特高原,纳尔默达(Narmada)向西流过印度中部,在排空进入阿拉伯海之前穿越了几个州。这项研究的重点是穿过贾巴尔布尔(Jabalpur)的纳尔默达河(Narmada River)部分,贾巴尔布尔(Jabalpur)是一个经历了快速城市化和工业化的地区,这可能会影响河流的水质。可以通过各种水质参数来衡量河流生态系统的健康,其中BOD和COD是关键指标。确实代表水中水中可用的氧气量。BOD测量有机物的微生物分解所需的氧气,反映了有机污染水平。cod量化化学氧化有机物和无机物质所需的氧气,表明存在可生物降解和不可生物降解的污染物。[6-9]监测这些参数提供了有关河流的生态状况,潜在的人为影响和水质季节性变化的见解[10,11]。本研究旨在评估2021年10月至2022年9月的贾巴尔布尔纳尔默达河的DO,BOD和COD层次,提供有关河流健康的全面概述,并确定可以指导未来保护工作的时间趋势。
摘要:在硫酸与强氧化剂(如高锰酸钾)混合物中石墨的湿化学氧化导致用羟基烯氧化石墨烯与羟基和环氧基团形成主要官能团。然而,反应机制尚不清楚,氧气来源是一个争论的主题。理论上可以起源于氧化剂,水或硫酸。在这项研究中,我们使用18O和17O标记的试剂来实验阐明反应机理,从而确定氧官能团的起源。我们的发现揭示了硫酸的多方面作用,充当分散培养基,是钾的脱水剂,是高锰酸钾的脱水剂和intercalant。此外,它在锰氧化物旁边显着充当氧气来源。至17 O固态魔法旋转(MAS)NMR实验,我们将水排除在氧合期间直接反应伴侣。通过标记实验,我们根据机械洞察力得出结论,这可以用于合成新型石墨烯衍生物。■简介石墨烯氧化石墨烯(GO)是一种分层的二维(2D)碳材料,该碳材料源自石墨烯,具有广泛的物理和化学性质。1因此,GO一直是密集研究的主题,并在电子设备(晶体管,传感器,太阳能电池,电池等)中发现了应用。),生物医学(分子转运蛋白,抗菌表面,生物传感,生物成像等。)和纳米滤过。2
摘要:碳纳米植物是一类碳纳米 - 合金支出,已通过来自各种前体的不同途径和方法合成。所选的前体,合成方法和条件可以强烈改变所得材料及其预期应用的理化特性。在此,通过将热解和化学氧化方法结合使用D-葡萄糖从D-葡萄糖中合成碳纳米植物(CND)。在产物和量子产率上研究了热解温度,氧化剂的等效物和回流时间的影响。在最佳条件下(300°C的热解温度,4.41等于H 2 O 2,90分钟的回流)CNDS分别获得了40%和3.6%的产品和量子收率。获得的CND被负电荷(ζ - -potential = - 32 mV),非常分散在水中,平均直径为2.2 nm。此外,在CNDS合成过程中,引入了氢氧化铵(NH 4 OH)作为脱水和/或钝化剂,导致产物和量子产率的显着提高约为1.5和3.76倍。合成的CND显示出针对不同革兰氏阳性和革兰氏阴性细菌菌株的广泛抗菌活性。两个合成的CND都会导致高度菌落形成单位还原(CFU),大多数测试细菌菌株的范围从98%至99.99%。然而,在没有NH 4 OH的情况下合成的CND,由于充满氧化基团的负电荷的表面,在区域抑制和最小抑制浓度方面表现更好。含有高氧纳米模型的抗菌活性升高与其ROS形成能力直接相关。关键字:D-葡萄糖,热解,氧化,细菌感染,最小抑制浓度,CFU降低■简介
由于人们对便携式能源设备的兴趣日益浓厚,储能变得比以往任何时候都更加重要。二元过渡金属氧化物 (BTMO) 因其出色的结构稳定性、改进的电子电导率和更大的可逆容量而作为潜在的新型储能材料受到了广泛关注。[1] 近年来,人们进行了大量研究来调查和开发柔性储能系统,主要目的是将柔性电子产品应用于柔性显示器、便携式电子产品、电子传感器、电源备份、移动电话、笔记本电脑等设备。现有的可充电储能市场主要由具有高灵活性、高能量密度和高功率密度的电化学储能系统的设计和生产主导。[2] 由于其快速的充放电速率、高功率密度和出色的循环性,超级电容器 (SC) 是各种应用中最有前途且发展最快的存储设备。[3]为了部分替代化石燃料,过去 10 年来,人们付出了巨大努力来利用可再生能源,如热能、太阳能、风能和潮汐能。这些交替可再生能源的广泛使用必须借助强大的储能系统来实现。[4][5][6] 超级电容器因其快速的充电和放电速度、可逆性、安全性、延长的循环寿命、高功率密度和环保性而引起了广泛关注。[7] 超级电容器优于其他储能技术,包括长寿命、快速充电和放电、高功率密度、快速充电存储和高能量密度。这些特性使超级电容器成为燃料电池、传统可充电电池和电容器的补充。[8] 超级电容器类别包括由各种储能技术产生的电双层电容器 (EDLC) 和伪电容器。EDLC 通过电极/电解质界面处的静电吸附/解吸来存储电荷。由于碳纳米管 (CNT)、石墨烯、碳气凝胶和活性炭具有较大的比表面积和优异的导电性,因此经常用于 EDLC。[9]研究人员希望创造具有高功率输出、长寿命和快速充电时间的设备,他们对开发可持续的电化学能量转换和存储解决方案很感兴趣,以满足日常生活中日益增长的电力需求。[10]由于其增强氧化还原化学的能力,BTMO 引起了人们对超级电容器进步的极大兴趣。[3]由于二元金属氧化物具有很高的理论比电容,它们作为超级电容器电极材料受到了广泛关注,例如 ZnFe2O4/rGO 复合材料,[11] NiCo 2 O 4 ,[12] CoV 2 O 6 ,[13] BiVO 4 /PANI 复合材料[14] 和 NiCo 2 S 4 。[15]。与单一过渡金属氧化物相比,BTMO 通常具有更高的比表面积、不同的氧化还原电位和优异的电导率,这些特性有利于实现良好的电化学性能。[16,17,18]。由于其优异的导电性和大的表面积,最近的研究集中在使用二元金属氧化物材料或二元金属氧化物纳米复合材料作为超级电容器应用的电极材料,如图 1 所示。制造二元金属氧化物的方法有很多,包括水热法、溶剂热法、微波辅助法、超声波处理和绿色技术。在这些选项中,大多数用于电容器的 BTMO 或 BTMO 纳米复合材料都是通过化学氧化和热反应过程沉淀制成的。这里我们介绍了用于电化学超级电容器电极的 BTMOs 和 BTMOs 纳米复合材料研究的最新进展。