葡萄枝是一种富含碳水化合物的农业废弃物,可被视为一种有前途的能源替代品。这项研究的目的是提出一种利用这种残留生物质的工艺策略,包括将可溶性糖化学转化为糠醛,将纤维素葡萄糖生物转化为 H 2 。对葡萄枝进行蒸汽爆破预处理,其操作条件优化为 190 ◦ C 和 1.6% H 2 SO 4 浸渍生物质。这些预处理条件允许在预水解物中回收 68.2% 的半纤维素糖和 18.2% 的葡萄糖,并通过酶水解回收 45.3% 的葡萄糖。因此,在优化条件下获得的预处理固体进行酶水解,生成的浆液被丁酸梭菌用作底物,发酵成生物氢(830.7 mL/L,每100 g生葡萄枝产量为3550 mL)和有机酸(1495.3 mg乙酸/L和1726.8 mg丁酸/L)。以糠醛生产为基础,在202 ◦ C的微波反应器中优化预水解物中木糖的化学转化,使用0.195 M FeCl 3作为催化剂,糠醛产量为15 g/L,产率为73%。
图 3 二氧化碳和煤炭废物利用 RD&D 需求研究主题,按反应和系统级理解以及演示和部署需求分类(列)。注意:黑色图标(见右下角图例)表示每个主题中都有 RD&D 需求的工艺(矿化、化学转化、生物转化和/或煤炭废物利用)。来源:Noun Project 图标,https://thenounproject.com。CC BY 3.0。
TT-C-490F (MR) w/INT. 修正案 3 2016 年 2 月 29 日 代替 TT-C-490F w/修正案 2 2015 年 9 月 24 日 联邦规范 金属基材的化学转化涂层和预处理(有机涂层基础) 总务管理局已授权所有联邦机构使用本联邦规范。 1. 范围和分类 1.1 范围。本规范涵盖涂层涂抹器的工艺、预处理和金属基材的预底漆表面处理。它涵盖了延缓腐蚀起始和促进底漆附着的金属表面处理。此外,本规范涵盖了转化涂层、预处理和预底漆涂层的鉴定测试要求。根据每个具体应用,可能需要额外的鉴定要求。除非合同另有规定,补充要求(附录 A)部分涵盖了黑色金属和锌/锌合金涂层金属的清洁和化学转化预处理,并提供了应用非化学剂耐涂层 (Non-CARC) 的具体要求,例如单层弹药涂层。1.2 分类。本规范涵盖以下清洁方法、表面处理工艺和基材类别(见 6.2)。1.2.1 表面清洁。表面清洁可能包括以下一种或多种方法以满足表面清洁度要求(见 6.1.1 和 6.1.2)。AMSC N/A 区域 MFFP 分发声明 A:批准公开发布;分发不受限制。
使用合成化肥,所有养分都处于植物可以占用的化学形式。因此,100%的养分可立即用于植物。如果您使用100磅。13-13-13肥料,全部13磅。 施用氮,磷酸盐和钾的,植物就可以使用它。 无需微生物活性或化学转化即可使营养可用。 这不是完全正确的,因为大多数化肥将尿素(CH 4 N 2 O)作为氮的来源。 在存在水和脲酶的情况下(在植物,细菌,真菌和某些无脊椎动物中发现的酶)消化以产生铵(NH 4 +)和二氧化碳(CO 2)。 植物可以吸收尿素,然后将其分解在植物内。 尿素也被土壤微生物在土壤中分解。13-13-13肥料,全部13磅。,植物就可以使用它。无需微生物活性或化学转化即可使营养可用。这不是完全正确的,因为大多数化肥将尿素(CH 4 N 2 O)作为氮的来源。在存在水和脲酶的情况下(在植物,细菌,真菌和某些无脊椎动物中发现的酶)消化以产生铵(NH 4 +)和二氧化碳(CO 2)。植物可以吸收尿素,然后将其分解在植物内。尿素也被土壤微生物在土壤中分解。
3 有人认为向日本出口氢气在经济上效率低下,因为这需要将氢气化学转化为氨等物质。对此,澳大利亚设想,日本钢铁和其他行业将利用澳大利亚的可再生能源和氢气在澳大利亚生产绿色钢铁等产品,然后将其进口回日本。然而,这种方法引发了对日本产业空心化的担忧。澳大利亚的氢气出口将需要日本和澳大利亚在运输方式和与氢气相关的业务方面进行协调。 4 本报告没有详细介绍氢气生产成本,但除了可再生电力的成本外,氢气的长距离运输和将其转化为氨的过程也带来了巨大的成本挑战。
酶是一种非常强大的生物催化剂,在几乎所有的生化过程中都发挥着至关重要的作用。(1)酶具有极高的催化速率和无与伦比的选择性,是解决人类面临的诸多问题(包括能源危机、制药业、环境污染和粮食短缺)的极具吸引力的催化剂。(2、3)此外,通过人工引入金属离子辅因子,可以大大扩展天然酶的功能,从而加速化学转化,促进氧化还原化学、自由基过程和具有挑战性的化学反应。(4)然而,蛋白质、底物和过渡金属复合物的正确放置和有效的相互作用已被证明具有挑战性,因此这些金属酶达到的催化效率通常低于分离的小分子复合物。(5、6)
近年来,由于人们对化石燃料资源的枯竭担忧以及人类活动引起的环境问题日益严重,将一碳 (C1) 分子化学转化为增值化学品和能源燃料引起了越来越多的研究兴趣。在这篇小型评论中,我们介绍了通过不同方式(包括热、电化学和光化学驱动过程)在 CO、CO 2 和 CH 4 转化中的重要 C1 反应,以及用于这些反应的可还原金属氧化物 (RMO) 材料的催化机理。我们主要总结了 RMO 催化材料的最新研究进展及其在这些 C1 反应中的共同功能,讨论了当前的研究现状和挑战,并对该领域未来的研究方向和机遇进行了展望。
背景:亚洲空气污染的空气污染状况现在被认为是世界上最大的环境健康风险。在全球范围内,2016年家庭和环境空气污染的共同影响归因于700万死亡,亚太国家占总死亡的60%以上(World Heath Statistics 2019)。与高水平颗粒物,对流层臭氧和其他污染物相关的空气质量降解对农业生产力和自然生态系统以及人类健康和福利都有影响。对流层气溶胶和臭氧也是主要的短期气候刺激者,但其辐射影响的估计仍然遭受较大的不确定性。了解空气污染,例如对排放,化学转化和运输的准确知识,对于污染控制至关重要。
这项工作的目的是通过新颖的设计和预测,推进在空气环境中运行的 Li-O 2 电池概念,使其具有较长的循环寿命和较高的效率。 这项工作的主要目标是使其能够在空气环境中运行,从而提高 Li-O 2 电池实际应用所需的体积能量密度 重点是发现新的电解质和添加剂组合,以促进具有高氧还原和释放活性的二维过渡金属二卤化物 (TMDC) 催化剂的阴极功能。 由于其理论比能高,Li-O 2 电池被认为是运输应用领域中锂离子电池的潜在替代品 在这个项目中,我们还将探索其他基于化学转化原理运行的可实际应用的电池新概念。
在全球范围内,回收了不到0.5%的后消费者纺织废物,大多数焚化或最终被填埋在垃圾填埋场中。大多数后消费者纺织品是混合纤维,使机械回收复杂化,这是由于物质混合物和污染物而引起的。在这里,我们使用微波辅助糖酵解在ZnO催化剂上,然后进行溶剂溶解,证明了后消费者混合纺织废物的化学转化。这种方法使工艺热充电,同时使聚酯和氨纶在15分钟内快速地分离到其单体。简单的溶剂溶解可以使棉和尼龙的分离。我们通过广泛的材料表征评估所有组件的质量,讨论其可持续回收的潜力,并对该过程的经济可行性提供技术经济分析。
