新疆师范大学化学化工学院,乌鲁木齐 830054 新疆,中国 * 电子邮件:suzhixj@sina.com 收稿日期:2019年11月8日 / 接受日期:2020年1月9日 / 发表日期:2020年5月10日 电极废弃物 LiNi 0.5 Co 0.2 Mn 0.3 O 2 回收的关键是有效地将正极材料与金属Al箔分离,以提高回收率。本文描述的方法利用有机溶剂与聚偏氟乙烯 (PVDF) 的相容性、超声波引起的空化和对流效应以及 PVDF 的分解温度。探索了超声处理持续时间、有机溶剂类型、有机溶剂与正极材料的比例、搅拌温度、搅拌时间、超声处理和搅拌顺序以及煅烧温度,以确定最佳条件。由此确定最佳剥离效率约为 93 %。将经有机溶剂预处理后的正极材料进行煅烧,通过 600 ℃煅烧有效去除 PVDF 粘结剂,在 800 ℃煅烧可得到具有合适层状结构和最好电化学性能的正极材料,首次放电比容量为 164.2 mAh g -1 。经过 50 次充放电循环后放电比容量为 132.4 mAh g -1,容量保持率为 80.6 %。关键词:LiNi 0.5 Co 0.2 Mn 0.3 ;回收利用;溶剂溶解法;电极废料;超声波 1. 引言
5 南京大学化学化工学院,生命分析化学国家重点实验室,南京 210023,中国 *通信地址:yuehe.lin@wsu.edu (YL);josephwang@ucsd.edu (JW);wenleizhu@nju.edu.cn (WZ) 收稿日期:2023 年 3 月 27 日;接受日期:2023 年 5 月 17 日;在线发表日期:2023 年 5 月 31 日;https://doi.org/10.59717/j.xinn-mater.2023.100023 © 2023 作者。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。引用:Ding S.、Yin L.、Lyu Z. 等人,(2023 年)。单原子材料赋能的可穿戴微电网。创新材料 1(2),100023。可穿戴微电网是一种集成了能量收集、存储和调节模块以及传感器的可穿戴系统,具有支持人类医疗保健的潜力。然而,可穿戴微电网由于成本高、性能、稳定性和生物相容性有限而尚未实现可行性,等待重大突破,特别是在材料科学领域。单原子材料 (SAM) 是最有前途的材料前沿之一,它可以克服上述缺点,并在各种收集器、储能设备和可穿戴传感器中提供许多额外的优势。在此,我们讨论了在可穿戴设备中使用 SAM 的潜力,以满足构建实用的能源自主可穿戴微电网的需求,以实现扩展的全面自我监控和人机界面。
通过外延应变制备锰氧化物薄膜 Dong Li 1† 、Bonan Zhu 2† 、Dirk Backes 3 、Larissa SI Veiga 3 、Tien-Lin Lee 3 、Hongguang Wang 4 、Qian He 5 、Pinku Roy 6,7 、Jiaye Zhang 8 、Jueli Shi 8 、Aiping Chen 6 、Peter A. van Aken 4 、Quanxi Jia 7 、Sarnjeet Dhesi 3 、David O. Scanlon 2,3 、Kelvin HL Zhang 8* 和 Weiwei Li 1* 1 南京航空航天大学物理学院,工业和信息化部空天信息材料与物理重点实验室,南京 211106,中国 2 伦敦大学学院化学系,伦敦 WC1H 0AJ,英国 3 Diamond Light Source Ltd.,哈威尔科学与创新园区,迪德科特,牛津郡 OX11 0DE,英国 4 马克斯普朗克固体研究所,Heisenbergstr. 1, 70569,斯图加特,德国 5 新加坡国立大学材料科学与工程系,新加坡,117575,新加坡 6 综合纳米技术中心 (CINT),洛斯阿拉莫斯国家实验室,洛斯阿拉莫斯,新墨西哥州 87545,美国 7 纽约州立大学布法罗分校材料设计与创新系,纽约州布法罗 14260,美国 8 厦门大学化工学院,固体表面物理化学国家重点实验室,能源材料化学协同创新中心,厦门 361005,中国 电子邮件:kelvinzhang@xmu.edu.cn,wl337@nuaa.edu.cn † 这些作者对这项工作做出了同等贡献
1 意大利技术学院基金会精准医学纳米技术实验室,Via Morego 30,热那亚 16163,意大利 2 特拉维夫大学 Shmunis 生物医学和癌症研究中心精准纳米医学实验室,特拉维夫 6997801,以色列 3 伊比和阿拉达·弗莱施曼工程学院材料科学与工程系 4 特拉维夫大学纳米科学与纳米技术中心,特拉维夫 6997801,以色列 5 特拉维夫大学癌症生物学研究中心,特拉维夫 6997801,以色列 6 纽卡斯尔大学药学院,泰恩河畔纽卡斯尔 NE1 7RU,英国 7 SM Discovery Group Inc,美国科罗拉多州 8 SM Discovery Ltd,英国达勒姆 9 奥胡斯大学分子生物学和遗传学系跨学科纳米科学中心,丹麦 10加州大学洛杉矶分校生物工程系,洛杉矶,CA 90095,美国 11 南京大学化工学院分析化学国家重点实验室和生命科学化学协同创新中心,南京 210023,中国 12 加州大学洛杉矶分校加州纳米系统研究所,洛杉矶,CA 90095,美国 13 以色列理工学院,海法 3200003,以色列 14 巴黎大学和巴黎大学北校区、INSERM U1148、LVTS、H ˆ opital X. Bichat,巴黎,F-75018,法国 15 埃因霍温理工大学化学生物学实验室、生物医学工程系和复杂分子系统研究所,埃因霍温,荷兰 16分子成像,亚琛工业大学,德国亚琛 17 靶向治疗系,特温特大学,荷兰恩斯赫德 18 药剂学系,乌得勒支大学,荷兰乌得勒支
大面积柔性双原子亚纳米薄镧系氧化物纳米卷的常规合成 吴苗苗 1、吴彤 2、孙明子 2、陆璐 2、李娜 1、张超 1、黄博龙 2 *、杜亚平 1 * 和闫春华 1,3,4 1 南开大学材料科学与工程学院、国家先进材料研究院、先进能源材料化学重点实验室、稀土与无机功能材料研究中心,天津 300350 中国。 2 香港理工大学应用生物及化学科技系,香港九龙红磡,999077 中国。 3 北京分子科学国家实验室,稀土材料化学及应用国家重点实验室,北大-港大稀土材料与生物无机化学联合实验室,北京大学化学与分子工程学院,北京 100871,中国。 4 兰州大学化工学院,兰州 730000,中国 电子邮件:bhuang@polyu.edu.hk(BH);ypdu@nankai.edu.cn(YD) 摘要 在许多超薄纳米材料的合成中都发现了表面波纹或滚动现象。然而,精确合成和控制这种细微纳米结构仍然极具挑战性,表明其在未来纳米能源系统中具有尚未开发的潜力。在本文中,建立了一种简单但稳定的胶体化学方法来合成超薄镧系氧化物纳米卷,首次实现了具有卷曲边缘的原子级厚度。详细的机理研究证实,纳米卷的滚动行为是由表面活性剂 3-溴丙基三甲基溴化铵中溴烷基团的吸附引起的表面电荷扰动引起的。更重要的是,实验证明了亚纳米薄镧系元素纳米卷的可逆和可控滚动。作为实际应用的证明,超薄镧系元素氧化物纳米卷/碳纳米管薄膜已被用于锂硫电池作为夹层,表现出优异的电化学性能。我们的方法广泛应用于高产率生产新型无机超薄纳米结构,在能源系统中有着巨大的应用前景。关键词:稀土,镧系元素氧化物,超薄纳米结构,密度泛函理论,锂硫电池
1 英国诺丁汉特伦特大学克利夫顿校区 SST 校区工程系,诺丁汉 NG11 8NS 2 哈尔滨工业大学复合材料与结构中心,哈尔滨市益矿街 2 号,150080,中国 3 哈尔滨工业大学航天科学与力学系,哈尔滨市西大直街 92 号,150001,中国 4 西北工业大学化工学院,陕西省西安市 710072,中国 5 北卡罗来纳州立大学化学与生物分子工程系,北卡罗来纳州罗利市 27695,美国 6 托莱多大学机械、工业与制造工程系,俄亥俄州托莱多市 43606,美国 7 康考迪亚大学,1455 Demaisonneuve West,# EV 4-233,蒙特利尔,魁北克,加拿大 H3G 1M8 8 亚琛工业大学纺织技术学院,德国亚琛 9 德克萨斯大学埃尔帕索分校航空航天与机械工程系,500 W University Ave,埃尔帕索,TX 79968 10 迪肯大学工程学院,维多利亚州吉朗 3216 澳大利亚 11 卢布尔雅那大学机械工程学院,Aškerčeva 6,1000 卢布尔雅那,斯洛文尼亚 12 德克萨斯大学达拉斯分校(UTD)机械工程系人形机器人、仿生机器人和智能系统(HBS 实验室),800 West Campbell Rd.,理查森,TX75080-3021 13 沃尔沃汽车公司研发部,哥德堡 418 78,瑞典 14 北京信息科学技术大学软件工程系北京科技大学,中国北京 100192 15 瑞典皇家理工学院工程设计系,斯德哥尔摩 10044,瑞典 16 芝浦工业大学工学院创新全球计划,日本东京丰洲 3-7-5 号 135- 8548 17 山形大学理工学院 4 Chome-3-16 Jonan,米泽,山形 992-8510 18 印度理工学院海得拉巴分校生物医学工程系,Kandi,Sangareddy,Telangana,502285,印度 19 拜罗伊特大学 20 素罗娜丽科技大学物理学院、科学研究所,呵叻 30000,泰国 21 素罗娜丽科技大学先进功能材料卓越中心(CoE-AFM),呵叻30000,泰国 22 科英布拉大学机械工程系,CEMMPRE,3030-788 科英布拉,葡萄牙 23 海德堡大学分子系统工程与先进材料研究所(IMSEAM),69120 海德堡,德国 24 南方科技大学机械与能源工程系,深圳 518055,中国 25 ICB UMR 6303 CNRS,贝尔福-蒙贝利亚尔理工大学,UTBM,法国 26 法国大学研究所(IUF),巴黎,法国 27 乔治亚理工学院乔治 W.伍德拉夫机械工程学院,佐治亚州亚特兰大 30332,美国 28 LRGP 7274 UMR CNRS,洛林大学,法国南锡 29 马来西亚诺丁汉大学科学与工程学院电气与电子工程系,马来西亚雪兰莪州士毛月 43500 30 阿尔伯塔大学机械工程系,加拿大艾伯塔省埃德蒙顿 T6G 1H9 31 杭州城市学院,中国杭州 32 浙江大学,中国杭州 路线图的客座编辑和通讯作者:mahdi.bodaghi@ntu.ac.uk;a.zolfagharian@deakin.edu.au
2 深圳大学微尺度光电子研究所二维光电子科学与技术教育部国际合作实验室,深圳 518060 3 扬州大学化工学院,扬州 225002 4 九州工业大学工学部应用化学系,北九州 804-8550,日本 抑制光生电荷复合对于高效光催化产氢至关重要。同质结因其优异的晶体结合和能带结构匹配而比异质结受到更多关注。然而,大多数同质结受到连续氧化相和还原相引起的氧化还原反应干扰,阻碍了光催化活性的提高。制备电荷相和氧化还原相完全空间分离的同质结光催化剂仍然具有挑战性。这里,我们通过背靠背几何结构制备了一种氧化相和还原相完全分离的二维同质结 CeO2。所制备的 CeO2 表现出两种不同的表面:一种光滑,另一种粗糙。实验和理论结果表明,与光滑表面相比,粗糙表面上有更多的 CeO2{220} 具有更高的还原能力,而 CeO2{200} 具有更高的可见光吸收能力。二维同质结 CeO2 产生的氢气量是普通 CeO2 纳米片的三倍,甚至超过了负载金纳米粒子的 CeO2 纳米片的氢气量。这项工作提出了一种新的同质结光催化剂模型,其电荷相和氧化还原相都完全空间分离,这将启发对同质结光催化剂的进一步研究。光催化制氢代表了一种很有前途的太阳能燃料生产方法。 1-5 光生电荷的分离 6-8 是增强光催化活性的关键因素,因为它决定了实际转移到催化剂表面的电荷量。促进电荷分离的策略包括形貌控制、9,10 掺入掺杂剂、11-14 用贵金属 15 纳米粒子改性表面以捕获光生电荷并延长其寿命,或构建异质结 16-18 或同质结 19-21 以促进电荷载体的空间分离。异质结或同质结界面处的能带偏移可产生电势梯度,使电荷载体彼此远离,从而抑制它们的复合。与异质结光催化剂相比,同质结光催化剂是同一材料两个区域之间的界面,有利于晶相键合和能带结构匹配。 22,23 同质结光催化剂可分为几种类型,如 pn 结、21,22,24 nn 结、20、25 非晶-晶体结 26 以及结合了不同形貌特征(如 0D、1D 和 2D 材料)的复合材料。23,27 例如,Zou 等人 21 将 n 型氧缺陷的 TiO 2 QD 与 p 型钛缺陷的 TiO 2 结合,制成 TiO 2 pn 同质结,结果表明 pn 同质结 TiO 2 的光催化制氢性能是纯 p-TiO 2 的 1.7 倍。尽管同质结光催化剂具有多功能性和坚固性,但在大多数同质结中,氧化相和还原相是连续的且位于同一侧,导致氧化还原反应相互干扰,阻碍了光催化活性的提高。制备表现出电荷和氧化还原相完全空间分离的同质结光催化剂仍然是一个挑战。在此,我们设计了一种空间电荷分离的二维同质结 CeO2 用于光催化产氢,其氧化相和还原相通过背靠背几何结构完全分离。所制备的 CeO2 呈现二维形貌,并表现出两种不同的表面:一种是光滑的,另一种是粗糙的。实验和理论结果表明,与光滑表面相比,粗糙表面上 CeO2 {220} 含量更高,具有更强的还原能力;CeO2 {200} 含量更高,具有更强的可见光吸收能力。二维同质结 CeO2 的产氢量是普通 CeO2 纳米片的 3 倍,甚至超过了负载金纳米粒子的 CeO2 纳米片。二维同质结 CeO2 产生的氢量是普通 CeO2 纳米片的 3 倍,甚至超过了负载金纳米颗粒的 CeO2 纳米片。二维同质结 CeO2 产生的氢量是普通 CeO2 纳米片的 3 倍,甚至超过了负载金纳米颗粒的 CeO2 纳米片。