○ 在开发开始之前的概念阶段,成立由PM领导的IPT。 ○ 今后,IPT将在装备的整个寿命周期内,从综合评估性能与成本之间的权衡、对国防生产和技术基础的影响的立场出发,持续管理事业计划,集中实施型号、规格的综合优化及LCC管理。 *应赋予 PM 的具体职责、角色和权限(例如,在设备审查会议等决策论坛上提出取消项目的权限)仍有待未来考虑。
Applied Geology Co., Ltd. *Motoki Sato、Hirotaka Otsuka、Erika Tozawa、Yukun Zhang
为了高效地开展持续的信息收集和监视活动,我们正在研究利用人工智能自动识别雷达图像的技术。自动解释和识别雷达图像需要熟练的人员,这有望减轻部队的负担并提高任务效率。
图 3 ReRAM 特性的电极依赖性:(a) 50×50 μm 2 ,(b) 200×200 μm 2 。 5.结论我们利用 TiO x 作为电阻变化层制作了 ReRAM,并评估了其特性。在本次创建的条件下,没有观察到复位操作。这被认为是因为在复位操作过程中,由于氧气的释放,灯丝没有断裂。比较电极尺寸,50×50 μm2 的较小元件与 200×200 μm2 的元件相比,可获得更优异的特性。这被认为表明了氧化退火过程中的尺寸依赖性。 6.参考文献 [1] A. Hardtdegen 等,IEEE Transactions on Electron Devices,第 65 卷,第 8 期,第 3229-3236 页 (2018) [2] Takeo Ninomiya,基于氧化物材料设计和可靠性建模的电阻式存储器量产,名古屋大学研究生院博士论文 (2016) [3] D.Carta 等,ACS Appl. Mater. Interfaces,第 19605-19611 页 (2016) [4] D. Acharyya 等,微电子可靠性。54,第 541-560 页 (2014)。
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
由于大型工厂的结构具有室内和室外设施,很难建立使用有线或无线局域网的通信环境,并且还存在由于数字化延迟而导致运营效率下降的问题。存在。 Ø 在偏远海岛工厂搭建本地5G环境,通过共享大量数据提高机器巡检工作效率,利用无人机确定原材料数量,利用4K摄像头检测非法入侵者,并自动判断非法入侵者使用人工智能进行精炼产品的粒度演示。 Ø 通过本地制造数字化提高生产力和运营效率。
1.个体工商户(占中小企业总销售额的5%)不包括在估算之内。2.包括“住宿、餐饮服务”、“生活相关服务、娱乐”、“学术研究、专业和技术服务”和“服务(未分类)”。3.中小企业基本调查中调查的所有行业,不包括四个行业(信息通信业、交通运输业、邮政业、房地产业、货物租赁业)4。AI实施领域11:问询响应自动化,12:新产品和服务开发的优化,13:提高客户沟通效率,14:制造流程自动化,15:优化企业运营,16:优化运输路线和装载计划,17:优化零售价格,18:提高制造流程效率,19:优化投资计划
设计,优化和制造。数值技术,例如有限元分析,验收动力学,第一原理计算和多尺度建模,可以有效地预测机构属性并优化设计。与此同时,人工智能和大数据分析可以通过机器学习发现新材料和反向设计。智能手段与自适应控制系统相结合,实现了生产过程的自动化和实时优化,从而提高了制造效率和精度。尽管数据和计算成本不足,但随着技术的进步,材料科学却朝着更高的精度和自动化方向发展。