循环!) 50280 EED,FLAG 标签 10 µg -80°C 52170-A 4x HMT 分析缓冲液 2A 4 ml -20°C 要求但未提供的材料或仪器: Anti-FLAG AlphaLISA ® 受体珠,5 mg/ml(PerkinElmer #AL112C) AlphaScreen ® 谷胱甘肽供体珠,5 mg/ml(PerkinElmer #6765300) Optiplate-384(PerkinElmer #6007290) AlphaScreen ® 微孔板读数仪可调节微量移液器和无菌吸头 应用: 用于研究 EZH2 结合试验、筛选抑制剂和选择性分析。禁忌症: DMSO 浓度高于 0.5%。吸收 AlphaScreen ® 信号发射范围 (520-620 nm) 内的光的绿色和蓝色染料,例如台盼蓝。避免使用强效单线态氧猝灭剂,例如叠氮化钠 (NaN 3 ) 或金属离子 (Fe 2+ 、Fe 3+ 、Cu 2+ 、Zn 2+ 和 Ni 2+ )。>1% RPMI 1640 培养基中存在过量生物素和铁会导致信号减弱。缺乏这些成分的 MEM 不会影响 AlphaScreen ® 检测。稳定性:按说明储存,自收到之日起至少可保存一年。参考文献:Kong, X., et al., J. Med. Chem. 2014; 57 :9512。
立陶宛可持续可再生能源情景 2050(基于立陶宛议会关于国家能源独立战略的法令 1)简介立陶宛可持续能源情景 2050(以下简称“情景”)展示了立陶宛能源领域的根本性变化如何帮助确保立陶宛到 2040 年更加能源高效、充足和气候中和。实施的变革将使经济从主要依赖化石燃料转向完全可再生能源,同时不损害环境,确保能源民主原则,缓解能源贫困并有助于建设更繁荣的社会。可再生风能和太阳能的巨大潜力将开始被用于电气化。这将带来许多就业机会和经济价值,因为本地生产将取代进口。从化石燃料向可再生能源的转变将有助于减少二氧化碳和其他温室气体以及其他污染物,如一氧化氮、颗粒物、氧化钠等。这一转变需要能源生产、传输和消费的巨大变化。可再生能源生产的多样性和不均衡性要求基础设施必须灵活,能够储存剩余能源并确保不间断地向所有消费者供电。立陶宛能源部门的现状在过去的几十年里,立陶宛已经摆脱了以前几乎完全依赖俄罗斯联邦的能源。布廷格石油码头于 1999 年建成。在 2007 年通过第一个国家能源独立战略后,完成了重要的战略项目:
产品名称 DNA Pol μ 兔多克隆抗体 宿主物种 兔 应用 WB;ELISA 物种交叉反应 人;大鼠;小鼠; 建议稀释度 Western Blot:1/500 - 1/2000。ELISA:1/40000。尚未在其他应用中测试。 免疫原 来自 DNA Pol μ 的合成肽。AA 范围:210-290 特异性 DNA Pol μ 多克隆抗体检测内源水平的 DNA Pol μ 蛋白。 制剂 含有 50% 甘油、0.5% BSA 和 0.02% 叠氮化钠的 PBS 液体。 储藏 储存于 -20°C。避免反复冻融循环。 蛋白质名称 DNA 指导的 DNA/RNA 聚合酶 mu 基因名称 POLM 细胞定位 细胞核。 纯化 使用表位特异性免疫原,通过亲和层析法从兔抗血清中亲和纯化抗体。克隆性 多克隆 浓度 1 mg/ml 观察到的条带 54kD 人类基因 ID 27434 人类 Swiss-Prot 编号 Q9NP87 别名 POLM;polmu;DNA 引导的 DNA/RNA 聚合酶 mu;Pol Mu;末端转移酶 背景催化活性:脱氧核苷三磷酸 + DNA(n) = 二磷酸 + DNA(n+1)。,辅因子:镁。,功能:似乎充当 Ig 变位酶,负责免疫球蛋白 (Ig) 基因超突变。,相似性:属于 DNA 聚合酶 X 型家族。,相似性:包含 1 个 BRCT
*根据需要调整和/或补充以满足性能规格。注意:Slanetz Bartley琼脂可以作为完整的培养基和琼脂碱提供,可与TTC 1%补充剂一起使用(请参阅“订单Informaton”部分)。方法原理教to糖为生物生长提供氨基酸,氮,碳,维生素和矿物质。酵母提取物是维生素的来源,尤其是B组。葡萄糖是可发酵的碳水化合物提供碳和能量。磷酸二磷酸二磷酸是一种缓冲液。叠氮化钠抑制革兰氏阴性细菌和葡萄球菌。ttc是细菌生长的氧化还原指标,在氧化形式中无色,并减少为不溶性的红色triphenyl formazan。琼脂是固化剂。制备用TTC悬浮的培养基脱水介质44.5 g粉末1升蒸馏水或去离子水。混合良好。加热沸腾直至完全溶解。请勿自压。将适当的体积分配到板上,例如将20毫升培养基倒入90毫米的培养皿中。没有TTC的脱水培养基悬浮44.4 g粉末中的1升蒸馏水或去离子水。混合良好。加热沸腾直至完全溶解。请勿自压。冷却至45-50°C。在分发到培养皿之前,加入10 ml TTC 1%补充剂。所需的材料但未提供标准的微生物供应和设备,例如:测试管,接种环,孵化器,质量控制生物。测试程序
硒是人类必不可少的微量营养素,在抗氧化剂和促氧化作用之间具有狭窄的边缘。氧化还原活性硒化合物具有增加癌细胞中ROS水平的效力,为治疗干预提供了合理的窗口。氧化还原活性硒化合物,例如硒酸钠(SE),硒代状态(SEC)和SE-MethylSeleenopysyine(MSC),已被证明可通过在体外改变各种肿瘤细胞的细胞中抑制生长,血管生成,并抑制凋亡。不同的硒化合物产生的不同代谢产物通过多种途径在肿瘤细胞上作用。硒酸钠很容易通过细胞外半胱氨酸将硒化钠(HSE-)简化为硒化氢(HSE),而硒代半胱氨酸则通过硒代半胱氨酸裂解酶降低至HSE。另一种重要的硒化合物MSC是通过kynurenine氨基转移酶1(KYAT1或CCBL1)对甲基塞烯醇的前药代谢。硒化氢(HSE-)和甲基塞烯醇(MS)是两个重要的中间代谢产物,通过诱导ROS的产生并通过氧化还原调节的信号传导途径引发细胞死亡,它们高度氧化还原活性。与硒酸盐相比,细胞更容易吸收硒化氢。这些中间分子可以在存在NADPH和硫醇的情况下有效地用氧气氧化物循环,从而增强恶性细胞中的氧化应激。然而,硒化合物的抗癌特性尚未完全表征。在这项工作中,我们的目标是使用不同的方法和实验模型来描述各种硒化合物的抗癌特性,这些模型易于从体外转换为体内。
朝着优化钠基全固态电池的制造工艺并通过透射原位 X 射线衍射进行表征的方向发展实验室 Laboratoire de Réactivité et Chimie des Solides - LRCS 实验室主任 Mathieu Morcrette 地址,国家 15 rue Beaudelocque 80000 Amiens, FRANCE www 链接 https://www.lrcs.u-picardie.fr/ 博士论文导师 Vincent Seznec 和 Jean-Noel Chotard 电话 +33322825331 电子邮件 Vincent.seznec@u-picardie.fr jean-noel.chotard@u-picardie.fr 科学项目:全固态电池 (ASSB) 被视为下一代储能系统,与传统的 LIB 或 NIB 相比具有多种优势。 ASSB 通过用在很宽的工作温度范围内都很稳定的固体电解质 (SE) 替代高度易燃的液体有机电解质,解决了爆炸风险。此外,它们可能使用锂或钠金属作为负极,从而增加系统的能量密度 1 。尽管 ASSB 可能带来好处,但在这种技术进入市场之前,必须克服几个问题。首先,必须达到与液体电解质相当的高离子电导率。其次,与液体电解质不同,SE 不能完全浸渍电极界面,这意味着离子渗透效率较低。这会导致高界面电阻,从而降低循环性能和稳定性。第三,由于循环过程中体积的连续变化而产生的机械应变会导致与活性材料失去接触,并最终完全脱离 1 。在此背景下,使用 NaSICON 型固体电解质(如 Na 3+x Zr 2 Si 2+x P 1-x O 12)的 Na 基全固态电池(Na-ASSB)引起了人们的极大兴趣,因为:i)可以使用钠金属作为阳极和不同的阴极材料来构建完整的 Na-ASSB 电池单元 2,ii)NaSICON 固体电解质的电导率在室温下在 3-5.10 -3 S/cm 范围内 3,4。iii) 基于 NaSICON 的 Na-ASSB 已开始提供合理的性能。5 得益于 NaSICON 材料的这些非常好的性能,我们打算实现两个主要目标:
二氧化钛(TIO 2)最近引起了极大的关注,这主要是由于骨科和纳米材料科学的交集。这种感兴趣的激增可以归因于良好的理解,即Ti金属在暴露于大气条件时会经历表面氧化,最终导致外部面上强大的天然Tio 2层的形成。诸如阳极氧化等技术进一步增强了这一过程,从而导致了在生物学上兼容和成骨的钝化表面涂层的发展。纳米材料化学的进步在该结构域中至关重要,从而使TIO 2结构的受控组装(包括纳米纤维和纳米管)具有受控组装。此外,已经确定了特定的合成方法,可以产生具有分层结构的钛酸簇,这有利于磷灰石形成 - 天然骨组织的无机复合物。也值得注意的是,二氧化钛具有反应并转化为钛纳米管或纳米线的能力。这种特征已被证明是有益的,因为它已被证明可以促进与体液的离子交往相互作用,从而支持骨组织生长。具体来说,当将钛材料放入模拟的体液中时,离子交换开始并鼓励羟基磷灰石的产生,羟基磷灰石是天然骨的基本成分。纳米材料化学丰富了这一研究领域,许多实验室已经研究了结构控制TIO 2的形态,例如纳米纤维和纳米管[11,12]。这种产生的离子层结构作为阳离子储层起着至关重要的作用。已经确定了合成方法中的进步来产生钛酸盐材料,这些材料由它们的粘土状晶格(由边缘共享TIO TIO 6八面体组成)与阳离子实体散布在一起[13]。这种分层结构特别有利于模拟体液(SBF)中的磷灰石形成。更具体地说,涉及粉状TIO 2矿物质的热液反应,例如假酶和氧化钠或氢氧化钾溶液,会根据反应条件而产生Na-或K- titanate纳米管或纳米线。它有助于体液中发现的阳离子的离子交换,因此自主维持阳离子平衡原位,这对于骨组织生长至关重要。在SBF环境中,Na/k- titanate和钙(Ca 2+)之间的浓度梯度促使具有Ca 2+的单价Na +或K +离子的离子交换。这为随后的相互作用设定了阶段:磷酸盐阴离子的协调{即(PO 3)3-,(HPO 3)2-和(H 2 PO 3) - 从体液与泰坦酸盐结合的Ca 2+的体液中的(H 2 PO 3) - }。这种相互作用的顶点是形成水合磷酸钙或羟基磷灰石的形成,羟基磷灰石是天然骨的必不可少的基础[13]。
Tanmoy Sarkar 和 Tanmoy Mondal DOI:https://doi.org/10.33545/2664844X.2024.v6.i2c.220 摘要 遗传变异对于作物育种至关重要。在传统的植物育种计划中,这种变异是通过杂交产生的,并从由此产生的分离世代中进行选择。诱发诱变可以补充或取代杂交作为变异源。引入变异的突变是新形式、品种或物种进化的基础。诱发突变和自发突变都对各种果树作物改良品种的开发做出了重大贡献,补充了传统的育种方法。虽然诱发突变在果树育种应用中有明确的局限性,但可以通过使用体外突变技术来扩大其潜力。 关键词:遗传变异、突变育种、果树作物、杂交 介绍 突变育种已经成为现代农业中一种变革性和有效的工具,特别是在果树作物改良领域。通过诱发突变(改变植物的遗传物质),育种者可以产生新的遗传变异,从而培育出具有理想性状的果树品种,如提高产量、增强抗病性、提高果实品质和增强对环境压力的耐受性。传统上,植物育种依靠杂交和选择来改良果树。然而,这些方法往往有局限性,特别是在克服遗传瓶颈、自交不亲和或某些果树品种的幼年期较长等问题时。突变育种通过创造更广泛的遗传多样性库提供了一种解决方案,使其成为传统育种方法的宝贵补充。过去几十年来,突变育种在果树中的应用经历了长足的发展。技术进步,特别是体外培养系统的进步,提高了突变诱导的精确度和效率。现代分子工具和基因组技术的结合,如新一代测序、标记辅助选择和基于 CRISPR 的基因组编辑,进一步完善了突变育种,使水果基因组的改变更具针对性和可控性。因此,现在的水果作物育种比以往任何时候都更快速、更准确、更可持续。本文深入探讨了突变育种的历史、方法和最新进展,强调了其在水果作物改良中的作用、特定水果品种的主要成就以及该领域的光明未来(Ahloowalia 等人,2004 年)[1]。突变育种在水果作物改良中的作用任何育种计划的主要目的都是增加作物种群的遗传多样性,以选择对农民和消费者都有益的性状。在水果作物中,果实大小、颜色、风味、抗病虫害能力以及对干旱、盐度和极端温度等非生物胁迫的耐受性等理想特性对于提高生产力、适销性和可持续性至关重要。然而,通过传统育种方法实现这些特性通常速度慢、成本高且效率低,尤其是对于需要几年才能成熟的果树等多年生作物。这就是诱变育种发挥作用的地方。诱变育种涉及使用物理(例如辐射)或化学(例如 EMS、叠氮化钠)诱变剂在植物中诱发突变,从而诱导随机遗传
Structural and spectroscopic correlation in barium-boro-tellurite glass hosts: effects of Dy 2 O 3 doping S. F. Hathot a,* , B. M. Al Dabbagh a , H. Aboud b a Applied Science Dep, University of Technology, Baghdad, Iraq b Faculty of science- physics Dep, college of Science, Al-Mustansiriya University, Iraq In this study, a series of通过熔融液化方法制成的含有不同浓度的Dy 2 O 3掺杂(0至1.25 mol%)的钡 - 硼酸盐玻璃宿主是不同的。进行了一项研究,以研究Dy 2 O 3掺杂剂如何影响玻璃的物理和光谱性状。原材料包括氧化钡(BAO),泰他二氧化氢(TEO 2),氧化硼(B 2 O 3)和氧化钠(DY 2 O 3),用于生产这些眼镜。XRD模式显示出宽阔的驼峰和远程周期性晶格排列,表明它们的性质。拉曼光谱分析显示了各种振动模式,其中最强烈的带是由300 cm-1和450 cm-1在TE – O-TE内部链链桥的对称拉伸振动模式对应的最强烈的带引起的。750 cm-1处的峰值是由于TEO 4和TE-O-TE振动模式引起的。光条间隙能的值从3.155降低至2.1894 eV,然后在较高的DY 2 O 3水平(0.75至1.25 mol%)下增加。在390、424、452、452、750、797、895和1092 nm之间观察到0.25至1.25 mol%之间的Div>在0.25至1.25 mol%之间观察到。 使用DUFFY和INGRAM方程计算了所提出的玻璃宿主的光学碱度,随着掺杂含量的增加而降低。。使用DUFFY和INGRAM方程计算了所提出的玻璃宿主的光学碱度,随着掺杂含量的增加而降低。将玻璃折射率从2.3563升至2.6584,然后在较高的DY 2 O 3含量下降低,这主要是由于玻璃基质中产生了更多的桥接氧(BO)。使用Lorentz-lorenz方程计算得出的玻璃电子极化率和氧化离子极化性的值随着DY 2 O 3含量的上升幅度下降,这归因于较少的非桥接氧(NBO)的存在。此外,随着DY +3水平的增加,光传递增加并减少了反射损失。1以下的金属化参数的值证明了制备样品的真实非晶性质。所有玻璃杯均揭示了由于4F9/2→6H15/2而引起的蓝色和黄色光致发光发射峰,分别在DY 3+中分别在4f9/2→6H15/2和4F9/2→6H13/2过渡中。所提出的玻璃成分可能有益于固态激光器的发展。(2023年11月23日收到; 2024年2月22日接受)关键词:DY 2 O 3掺杂,拉曼光谱,结构,吸收,排放1.引言由Teo 2作为宿主制成的泰瑞尔玻璃系统在过去几年中一直引起人们的兴趣,因为与氧化物玻璃杯相比,化学和物理特性增强了。这些玻璃具有较大的热电常数,红外透射率,介电常数和折射率的值。低声子的能量截止点和熔点;非常高的稀土离子溶解度[1]。基于tellute的玻璃也可以用各种稀土元素掺杂,以获得改进的光学特性,这些光学特性是由稀土离子中电子过渡产生的。当将稀土离子添加到洁牙液玻璃中时,它们可能会导致网络结构的变化,包括形成稀土氧化物簇或具有氧原子的稀土离子的配位2 [2,3]。可以通过结构变化来修改此类玻璃的光谱属性,表明这些特性之间由稀土元素控制的这些特性之间存在很强的相关性。带有稀土离子的tellurite玻璃
1。伯特利·塔雷基(Bethel Tarekegne),丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell。“存储作为股票资产。”当前的可持续/可再生能源报告8,149-155(2021年9月)。2。Charlie Vartanian,Matt Paiss,Vilayanur Viswanathan,Jaime Kolln,David Reed。 “审查储能系统的代码和标准”。 当前的可持续/可再生能源8,138-148(2021年9月)。 3。 Patrick Balducci,Kendall Mongird,Mark Weimar。 “了解储能对电源系统的可靠性和弹性应用的价值。” 当前的可持续/可再生能源报告8,131-137(2021年9月)。 4。 Xiang Li,Peiyuan Gao,Yun-Yu Lai,J。DavidBazak,Aaron Hollas,Heng-Yi Lin,Vijayakumar Murugesan,Shuyuan Zhang,Chung-Fu Cheng,Wei-Yao Tung,Yuehting Lai,Yuehting Lai,Yueh-ting Lai,Ruozhu Feng,Yien Yien wang,Wei-wang,Weunwang,wang,W。 “有机铁复合体的对称性设计,用于长循环性有机氧化还原流动电池。” 自然能源6,873-881(2021年9月)。 5。 Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。 “对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。” 材料化学杂志A 9(36),20766-20775(2021年8月)。 6。 Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。 “锂离子电池物理学和基于统计的健康模型。” 7。 8。 9。Charlie Vartanian,Matt Paiss,Vilayanur Viswanathan,Jaime Kolln,David Reed。“审查储能系统的代码和标准”。当前的可持续/可再生能源8,138-148(2021年9月)。3。Patrick Balducci,Kendall Mongird,Mark Weimar。“了解储能对电源系统的可靠性和弹性应用的价值。”当前的可持续/可再生能源报告8,131-137(2021年9月)。4。Xiang Li,Peiyuan Gao,Yun-Yu Lai,J。DavidBazak,Aaron Hollas,Heng-Yi Lin,Vijayakumar Murugesan,Shuyuan Zhang,Chung-Fu Cheng,Wei-Yao Tung,Yuehting Lai,Yuehting Lai,Yueh-ting Lai,Ruozhu Feng,Yien Yien wang,Wei-wang,Weunwang,wang,W。“有机铁复合体的对称性设计,用于长循环性有机氧化还原流动电池。”自然能源6,873-881(2021年9月)。5。Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。 “对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。” 材料化学杂志A 9(36),20766-20775(2021年8月)。 6。 Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。 “锂离子电池物理学和基于统计的健康模型。” 7。 8。 9。Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。“对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。”材料化学杂志A 9(36),20766-20775(2021年8月)。6。Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。“锂离子电池物理学和基于统计的健康模型。”7。8。9。权力来源杂志501,230032(2021年7月)。Hee-Jung Chang,Ismael A. Rodriguez-Perez,Matthew Fayette,Nathan L. Canfield,Huilin Pan,Daiwon Choi,Xiaolin Li,David Reed。“水基粘合剂对轻度水性锌电池中锰二氧化碳阴极的电化学性能的影响。”碳能3:(3),473-481(2021年7月)。Bhuvaneswari M. Sivakumar,Venkateshkumar Prabhakaran,Kaining Duanum,Edwin Thomsen,Brian Berland,Nicholas Gomez,David Reed,Vijayakumar Murugesan。“钒氧化还原流量电池中碳电极的长期结构和化学稳定性。”ACS应用能源材料4:(6),6074-6081(2021年6月)。Xiaowen Zhan,Minyuan M. Li,J. Mark Weller,Vincent L. Sprenkle,Guosheng Li。 “最近用于卤化钠卤化物电池的阴极材料的进度。” 材料14:(12),3260(2021年6月)。 10。 Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。 “可逆的酮氢化和脱氢有机氧化还原流量电池。” 科学372:(6544),836-840(2021年5月)。 11。 J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。Xiaowen Zhan,Minyuan M. Li,J.Mark Weller,Vincent L. Sprenkle,Guosheng Li。 “最近用于卤化钠卤化物电池的阴极材料的进度。” 材料14:(12),3260(2021年6月)。 10。 Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。 “可逆的酮氢化和脱氢有机氧化还原流量电池。” 科学372:(6544),836-840(2021年5月)。 11。 J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。Mark Weller,Vincent L. Sprenkle,Guosheng Li。“最近用于卤化钠卤化物电池的阴极材料的进度。”材料14:(12),3260(2021年6月)。10。Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。“可逆的酮氢化和脱氢有机氧化还原流量电池。”科学372:(6544),836-840(2021年5月)。11。J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。“使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。物理化学杂志B 125(19),5089-5099(2021年5月)。12。junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。13。14。“在可充电锌电池复兴中的十字路口。”今天的材料45:191-212(2021年5月)。Nimat Shamim,Edwin C. Thomsen,Vilayanur V. Viswanathan,David Reed,Vincent Sprenkle,Guosheng Li。 “在剃须占空比下评估斑马电池模块。” 材料14:(9),2280(2021年4月)。 Biwei Xiao,Yichao Wang,Sha Tan,Miao Song,Xiang Li,Yuxin Zhang,Feng Lin,Kee Sung Han,Fredrick Omenya,Khalil Amine,Xiao-Qiao-Qinging Yang,Yang,David Reed,David Hu,Yanyan Hu,Gui-liang Xu,Enyyuan liia liia li,XIA,XIA,XIA,XIA,XINIA,XINIA,XINININ kininnin。 “富含锰的层状钠阴极的空缺 - 实现了O3相稳定。” Angewandte Chemie International Edition 60(15),8258-8267(2021年4月)。 15。 di Wu,Xu MA。 “用于控制和尺寸连接网格的能量存储的建模和优化方法:审查。” 当前的可持续/可再生能源报告(2021年3月)。 16。 di Wu,Xu MA,Patrick Balducci,Dhruv Bhatnagar。 “对幕后光伏的经济评估,并在夏威夷群岛上配对电池。” 应用能源286(2021年3月)。 17。 Vijayakumar Murugesan,Zimin Nie,Xin Zhang,Peiyuan Gao,Zihua Zhu,Qian Huang,Litao Yan,David Reed,Wei Wang。 “通过可调溶剂化学的化学反应加速了钒氧化还原流量电池的设计。” 细胞报告物理科学2(2),100323(2021年2月)。 18。 “应力和与界面兼容的红磷阳极,用于高能和耐用的钠离子电池。” ACS Energy Letters 6,547-556(2021年2月)。Nimat Shamim,Edwin C. Thomsen,Vilayanur V. Viswanathan,David Reed,Vincent Sprenkle,Guosheng Li。“在剃须占空比下评估斑马电池模块。”材料14:(9),2280(2021年4月)。Biwei Xiao,Yichao Wang,Sha Tan,Miao Song,Xiang Li,Yuxin Zhang,Feng Lin,Kee Sung Han,Fredrick Omenya,Khalil Amine,Xiao-Qiao-Qinging Yang,Yang,David Reed,David Hu,Yanyan Hu,Gui-liang Xu,Enyyuan liia liia li,XIA,XIA,XIA,XIA,XINIA,XINIA,XINININ kininnin。“富含锰的层状钠阴极的空缺 - 实现了O3相稳定。”Angewandte Chemie International Edition 60(15),8258-8267(2021年4月)。15。di Wu,Xu MA。“用于控制和尺寸连接网格的能量存储的建模和优化方法:审查。”当前的可持续/可再生能源报告(2021年3月)。16。di Wu,Xu MA,Patrick Balducci,Dhruv Bhatnagar。“对幕后光伏的经济评估,并在夏威夷群岛上配对电池。”应用能源286(2021年3月)。17。Vijayakumar Murugesan,Zimin Nie,Xin Zhang,Peiyuan Gao,Zihua Zhu,Qian Huang,Litao Yan,David Reed,Wei Wang。“通过可调溶剂化学的化学反应加速了钒氧化还原流量电池的设计。”细胞报告物理科学2(2),100323(2021年2月)。18。“应力和与界面兼容的红磷阳极,用于高能和耐用的钠离子电池。”ACS Energy Letters 6,547-556(2021年2月)。Xiang Liu, Biwei Xiao, Amine Daali, Xinwei Zhou, Zhou Yu, Xiang Li, Yuzi Liu, Liang Yin, Zhenzhen Yang, Chen Zhao, Likun Zhu, Yang Ren, Lei Cheng, Shabbir Ahmed, Zonghai Chen, Xiaolin Li, Gui-Liang Xu, Khalil胺。19。Minyuan M. Li,Xiaochuan Lu,Xiaowen Zhan,Mark H. Engelhard,Jeffrey F. Bonnett,Evgueni Polikarpov,Keeyoung Jung,David M. Reed,Vincent Sprenkle,Vincent Sprenkle,Guosheng Li。“高温硫磺电池在低温下通过优质的熔融性可润湿性。”化学通信57(1)45-48(2021年1月)。20。Maitri Uppaluri,Akshay Subramaniam,Lubhani Mishra,Vilayanur Viswanathan,Venkat R. Subramanian。“传输模型可以预测锂金属电池中的逆特征而不修饰动力学吗?”电化学学会杂志167,第16号,文章编号160547(2020年12月)。21。Qian Huang,Bin Li,Chaojie Song,Zhengming Jiang,Alison Platt,Khalid Fatih,Christina Bock,Darren Jang,David Reed。“通过稳定的参考电极对全瓦数氧化还原流量电池进行原位可靠性研究。”电化学学会杂志165,第16号,第160541条(2020年12月)。22。Jeremy Twitchell,Jeffrey Taft,Rebecca O'Neil,Angela Becker-Dippmann。2021,PNNL-30172,西北国家实验室,华盛顿州Richland。 嵌入式网格储能的调节含义23。 丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell,Danielle Preziuso。 2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。 能源公平与环境正义研讨会报告2021,PNNL-30172,西北国家实验室,华盛顿州Richland。嵌入式网格储能的调节含义23。丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell,Danielle Preziuso。2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。 能源公平与环境正义研讨会报告2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。能源公平与环境正义研讨会报告