基因组中包含的信息对于我们植物病理学家来说是一座金矿,使我们能够改进诊断方法并寻找与流行病学和植物-微生物相互作用有关的特征,以及它们背后的进化过程。2022 年是《自然》杂志上发表的前两个黄单胞菌全基因组序列(da Silva 等人,2002 年)的 20 周年。十年后,我加入了黄单胞菌社区,致力于宿主适应性研究,这篇出版物是我阅读的第一篇黄单胞菌论文之一。这项工作的一个核心方面是比较两种黄单胞菌致病变种,即柑橘黄单胞菌和油菜黄单胞菌,它们分别对柑橘和十字花科植物具有致病性。这种方法使作者能够识别菌株特异性基因,并提出可能解释不同宿主特异性和致病过程的机制,这是我们社区的两个热点问题(Harris 等人,2020 年;Jacques 等人,2016 年)。这种比较基因组学分析在许多方面都具有开创性,下一个黄单胞菌基因组花了三年多的时间才发表。几年后,随着越来越快、越来越便宜的测序技术的出现,全基因组测序“民主化”了(Zhao & Grant,2011 年),很快导致每年发布几十个,然后是几百个黄单胞菌基因组序列(图 1)。
基因驱动系统可以确保比正常的孟德尔分离更多地将理想性状传递给后代。成簇的规律散布回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 介导的基因驱动系统已在双翅目昆虫物种中得到证实,包括果蝇和按蚊,但尚未在其他昆虫物种中得到证实。在这里,我们开发了一种单一的 CRISPR/Cas9 介导的基因驱动构建体,用于小菜蛾,一种对十字花科作物具有高度破坏性的鳞翅目害虫。该基因驱动构建体包含一个 Cas9 基因、一个标记基因 (EGFP) 和一个靶向表型标记基因 (Pxyellow) 的 gRNA 序列,并位点特异性地插入到小菜蛾基因组中。这种基于归巢的基因驱动将包含 Cas9 基因、gRNA 和 EGFP 基因及其启动子的片段约 12 kb 复制到目标位点。总体而言,由于同源定向修复 (HDR),基因驱动效率为 6.67% – 12.59%,由于非同源末端连接 (NHEJ),抗性等位基因形成率为 80.93% – 86.77%。此外,与来自雌性亲本的转基因后代相比,来自父本的转基因后代表现出更高的基因驱动效率。这项研究证明了 CRISPR/Cas9 介导的基因驱动构建体在小菜蛾中的可行性,可将所需的性状遗传给后代。这项研究的结果为开发一种有效的 CRISPR/Cas9 介导的基因驱动系统用于害虫防治奠定了基础。
on intrinsic and acquired resistance mechanisms which include increased efflux of chemotherapeutics (e.g., by ABC transporters), increased DNA repair, mutation or alteration of drug targets, epigenetic mechanisms such as epigenetic regulation of gene expression and/or of protein drug targets, induction of senescence, factors in the tumor microenvironment, and epithelial-to-mesenchymal transition [4,5]。为了克服这些抗性因素,除了鉴定新药物外,还必须对这些机制进行透彻的了解。自然衍生的吲哚化合物作为抗癌剂表现出很大的潜力,并且吲哚生物碱药物(例如长春蛋白和葡萄蛋白)自多年以来就可以治疗肿瘤疾病[6,7] [6,7]。基于天然铅吲哚衍生物星孢子蛋白[8-10]开发了基于吲哚酶的糖化酶抑制剂(批准用于转移性肾细胞癌的治疗)和enzastaurin。吲哚也是突出的饮食化合物,以及诸如芥末葡萄糖素,吲哚-3-carbinol(I3c)和3,3'-二烷基甲烷(dim)(dim)的3,3'-二烷基甲醇(dim)抗癌诱导症(以及对磷酸33的抗磷酸33)的活性(dim)的活性(dim)的3.-二烷基甲烷(dim),因子κB(NF-κB)信号传导[图1] [11-13]。很久以前,Cato The Elder建议卷心菜叶治疗癌性溃疡和统计数据,现在表明,人群随着十字花科蔬菜的消费量增加显示出较低的癌症事件[13-15]。天然吲哚葡萄糖醇分解为I3c,并在食用时在胃中形成昏暗。然而,DIM的生物利用度较差,并且在体内测试中通常需要制剂[11,16]。DIM的合成衍生物已通过各种合成方法制备[17,18]。几种昏暗的衍生物揭示了针对癌细胞的高活性[7,19]。在本综述中介绍了DIM及其合成衍生物的抗癌活性的当前状态,重点是癌症耐药性,肿瘤生长抑制以及有关其对信号通路和转录因子的影响的新见解。
(i) Singh S、Singh T、Singh KK、Srivastava MK、Das MM、Mahanta SK、Kumar N、Katiyar R、Ghosh PK 和 Misra AK (2023) 对全球 Cenchrus 种质资源的关键营养和青贮饲料质量性状进行评估。正面。营养。九1094763。 doi: 10.3389/fnut.2022.1094763。 (ii)Sanjay Gupta、Giriraj Kumawat、Nisha Agrawal、Rachana Tripathi、Vangala Rajesh、Vennampally Nataraj、Shivakumar Maranna、Gyanesh K. Satpute、Subhash Chandra、Milind B. Ratnaparkhe、Manoj K. Srivastava、Nita Khandekar、Meeta Jain(2022 年)。光周期特性:深入了解大豆(Glycine max)适应不同纬度生长和成熟度的分子机制。植物育种。 2022;1-18。 (三)AK Roy、M. Chakraborti、A. Radhakrishna、KK Dwivedi、MK Srivastava、S. Saxena、S. Paul、Aarti Khare、DR Malaviya、P. Kaushal。 (2022 年)。利用无融合生殖介导的基因组添加 (AMGA) 策略在狼尾草中进行外来基因组动员和固定,以改善狼尾草的驯化性状。理论与应用遗传学https://doi.org/10.1007/s00122-022-04138-4。 (iv)John G. Carman、Mayelyn Mateo de Arias、Lei Gao、Xinghua Zhao、Becky M. Kowallis、David A. Sherwood、Manoj K. Srivastava、Krishna K. Dwivedi、Bo J. Price、Landon Watts、Michael D. Windham。 (2019)二倍体布氏菌(十字花科)的无孢子发生和双孢子发生可能通过重组驱动的无融合生殖到性逆转促进物种形成。植物科学前沿 10: 724(doi: 10.3389/fpls.2019.00724)(v)Pankaj Kaushal、Krishna K. Dwivedi、Auji Radhakrishna、Manoj K. Srivastava、Vinay Kumar、Ajoy Kumar Roy 和 Devendra R. Malaviya。 (2019 年)。划分无融合生殖成分以理解和利用配子体无融合生殖。植物科学前沿 10: 256(doi: 10.3389/fpls.2019.00256)(vi)Joakim Bygdell、Vaibhav Srivastava、Ogonna Obudulu、Manoj K. Srivastava、Robert Nilsson、Björn Sundberg、Johan Trygg、Ewa Mellerowicz 和 Gunnar Wingsle。 (2017)。在高组织分辨率下监测杨树张力木材形成过程中的蛋白质表达。 J.实验植物学 68 (13): 3405-3417。 (NAAS评级11.53)。