为消除我国电力输送瓶颈、提高可再生能源跨区消纳能力,建立了考虑电网稳定性和灵活性资源的输电线路布局多目标优化模型,确定了六大区域间最优线路路径、11种直流和交流输电技术的选择、输送容量以及跨区输电线路建成时间。研究结果表明,2039年西北向东和华北向中部的输电容量将分别比2018年增加265%和160%。2033年起800kV直流(10GW)将成为主要输电技术。2036—2039年是线路建设竣工的高峰期。中部和东部地区是我国风电和太阳能发电装机占比增长最快的地区。 2039年这些地区风电、光伏装机占比将是2018年的4~6倍,增加储能、提高需求侧响应可分别增加可再生能源上网电量1.7%、2.6%,但将导致新建线路分别减少2~6条、7~9条。
北京针对数据中心提出的严格电力提案使其领先于大多数区域市场;新加坡仍处于数据中心建设暂停阶段,政府正在寻找解决电力问题的方案。即使没有这样的规定,新设施的开发也已经蔓延到北京周边的天津和河北,甚至更远的山西和内蒙古。京津冀地区反而发展成为华北地区的数据中心枢纽。天津和河北不仅是灾难恢复设施的所在地,而且是更大的生态系统的一部分,其中有区域分配给超大规模云设施和可再生能源。最近的提案更有可能产生的影响是,它将加快北京小型设施的升级和整合,而严格执行法规将促进 PUE 优化并迫使供应商采用可再生能源。尽管如此,新的要求预计不会对运营造成重大阻力,因为北京的主机托管空间更为宝贵。世纪互联和万国数据等供应商在北京和上海的主机托管市场占有相当大的份额,处于令人羡慕的地位,因为进入这两个市场的门槛现在高得多。这种情况并非北京独有,在上海和其他主要数据中心枢纽也很普遍,因为中国这些主要市场的制约因素对超大规模自建数据中心来说也是一个挑战。
中国地方政府政绩考核体系将经济增长与环境保护放在同等重要的位置,这迫使地方政府在考核中平衡两方面(Yin、Wu,2022)。与减少污染企业产量或迁移工业等策略相比,利用环保技术减排对经济增长的直接影响较小。这使得推广和发展此类技术成为应对环境挑战的更可行选择(Shen et al.,2021)。然而,重要的是要考虑到,根据边际收益递减理论,投资于环境技术研发的收益并不总是遵循一条直线(Solow,1956)。在过去的二十年里,中国越来越认识到在经济发展的同时环境保护的重要性。如图 1A、B 所示,2006 年至 2021 年,绿色专利技术显著增长,尤其是在华北和长江三角洲等污染严重的地区。虽然这一趋势凸显了技术解决方案的潜力,但至关重要的是要探索对环境技术的持续投资是否始终产生理想的结果,因为收益递减可能会限制此类投资随着时间的推移的效率。这是一个需要进一步研究和政策考虑的重要领域。鉴于环境信息披露的自愿性质,直接研究环境技术投资与环境绩效之间关系的文献很少。虽然大多数研究证实环境研发投资与污染减少之间存在正相关关系(Anderson,2001;Yi 等,2020),但一些研究揭示了非线性关系(Li L. 等,2021;Li W. 等,2021)。如果存在这种非线性,环境技术的进步可能并不总能产生最佳结果。例如,中国生态环境部统计年鉴的数据显示,尽管2019年用于环境保护能力建设的资金增加了
摘要:目前对供应链中虚拟稀缺水资源的理解主要集中在水量上。然而,评估供应链中水资源短缺的潜在经济成本和恢复力对于做出明智的水资源和供应链决策至关重要。我们量化了城市层面的水资源短缺风险和恢复力,因为细粒度的研究可以更好地反映中国各地水资源可用性、需求和社会经济发展的高度差异。为此,我们在 2007 年至 2017 年期间采用了基于收入的多区域投入产出方法,可以全面评估供应链中水资源短缺的经济影响。结果表明,供应链在全国范围内将潜在的当地经济风险放大了三倍,在某些城市,放大效应甚至达到十倍。考虑到包括物理水转移影响在内的多个维度,不同城市的水资源短缺恢复力各不相同,并且与水资源短缺风险呈负相关。这表明解决相关风险和恢复力维度对于增强城市水资源经济安全的重要性。我们的分析重点关注那些面临高水资源经济风险和低恢复力的城市,这些城市主要位于华北、东北和华东地区,国家政策可以优先考虑这些城市,以增强其应对水资源短缺的准备。关键词:虚拟稀缺水资源、水资源恢复力、基于收入的模型、跨区域投入产出模型、跨流域调水
摘要:随着可再生能源的发展和电网特性的变化,电力供需在空间和时间上的平衡越来越困难,对电网调度能力的提升要求也越来越高,因此需要发挥柔性负荷调度的潜力,以促进可再生能源的大规模消纳和新型电网的建设。在分析现有负荷调度研究的基础上,结合国内外负荷调度特点的差异,提出了新形势下负荷资源参与电网调度的技术架构和若干关键技术——负荷调度自主协同控制系统。该系统实现主网、配网、微网(负荷聚合器)的多层协调控制,通过聚合器运营平台聚合可调负荷资源,并与调度商负荷调节器平台对接,实现与调度机构的实时数据交互以及对聚合器的监控、控制和营销。通过连续功率调节支持负荷资源参与全网调度优化,阐述了控制模式、负荷建模、调度策略、安全防护等若干关键技术。通过对华北电网有序充电桩和储能集群的闭环控制,验证了所提架构和关键技术的可行性。该路线已成功支持多个可调负荷聚合器参与华北电网辅助服务市场,实现调峰。最后,对双碳目标下负荷资源参与电网调度的技术挑战进行了讨论和展望。
小组成员: • Roger Beachy (NAS),华盛顿大学圣路易斯分校生物学名誉教授 • 康乐 (NAS/CAS),中国科学院北京生命科学研究院特聘教授 • 朱春武,中国科学院土壤研究所全球气候变化与粮食安全教授 • Heidi Gibson,史密森尼科学教育中心全球可持续发展系列经理 12:00 pm 问答和讨论 所有参与者 12:30 pm 午餐 1:30 pm 小组 II:食物系统、水和健康 主持人: • Judith Wasserheit (NAM),华盛顿大学 • 秦岳,北京大学 小组成员: • Daniel Raiten,美国国立卫生研究院营养研究办公室高级营养科学家 • Jessica Fanzo (NAS),哥伦比亚大学气候教授和人类粮食计划主任 • 闫晓媛,中国科学院土壤研究所教授 • 刘俊国,教授华北水利水电大学校长 下午 2:40 问答和讨论 所有参会者 下午 3:10 休息 下午 3:30 总结讨论:未来的需求和机遇 Karen Seto (NAS) 和 Yongguan Zhu (CAS) 与所有参会者 下午 4:00 休会 2024 年 11 月 22 日,星期五 上午 9:00 欢迎和前一天会议回顾 Karen Seto (NAS),耶鲁大学,美国 委员会主席 Yongguan Zhu (CAS),中国科学院,中国 委员会主席
中国是世界上最大的可再生能源“舰队”,截至 2020 年底,风电和太阳能累计发电量分别达到 281.5 吉瓦和 253.4 吉瓦[1]。从地理上看,风能和太阳能资源主要分布在中国的华北、西北和东北地区(又称“三北地区”),而经济集群(即电力负荷中心)一般位于中国的东部和南部[2]。能源供需之间的空间不平衡和电网缺乏灵活性导致可再生能源限电现象严重,从而造成利用率急剧下降,装机容量和实际发电量之间的差距越来越大[3e6]。因此,中国一直在建设特高压线路,将可再生能源从北部和西部地区输送到中国东部和南部[7]。到 2020 年,已建成 20 条特高压线路,绵延约 30,000 公里,可满足全国 4% 的需求 [7,8]。然而,进展低于预期。2019 年,这些专用线路的整体运行率低于 40%,有些线路的运行率甚至低于 20% [9]。此外,大多数输电涉及煤电和水电,风电和太阳能仅占很小份额,2019 年占总输电量的 13% [9,10]。造成这种情况的主要原因是发电产能过剩和缺乏市场机制 [11]。全国电力需求的增长率从 2003 年的 11.7% 下降到过去 10 年的 4.5%,导致 2016 年产能过剩 35% [7]。这导致愿意接受来自其他地区电力的买家减少,因为当地电力供应仍然充足 [7、9]。此外,分散且以省为单位的电力部门未能优先分配可再生能源 [12]。