摘要 — 演讲首先将模块化、功能集成、分散化、混合化和协同关联确定为未来电力电子转换器性能改进的关键概念(“X 概念”)。接下来,讨论了苏黎世联邦理工学院电力电子系统实验室在具有电压或电流直流链路(即升压-降压或降压-升压功能)的双向三相 AC/DC 转换器系统领域的最新研究成果。这两个系统的实现都基于 PFC 整流器输入级和 DC/DC 转换器输出级的“协同控制”,并考虑了 400V 线对线输入、200V 至 1000V 的超宽输出电压范围和 10kW 的额定功率。所述硬件演示器具有高效率和高功率密度,因此可以作为电气隔离 EV 充电器的标准构建块。此外,根据综合实验分析的结果,这两个系统都非常适合用作未来基于 RCD 的非隔离 EV 充电器。演讲最后强调了从线性经济向循环经济转变的紧迫性,未来的电力电子转换器设计也需要考虑这一点,以确保可持续地实现 2050 年净零二氧化碳目标。
利用光伏无功功率和储能有功功率可以解决光伏接入低压配电网带来的电压越限、网损、三相不平衡等问题,但低压配电网三相四线结构给潮流计算带来困难。为实现通过潮流最优来利用光伏,提出一种基于三相四线系统潮流最优的低压配电网光伏储能协同控制方法。考虑电压和电流的幅值和相位角,采用三相四线节点导纳矩阵建立低压配电网网络拓扑结构,以最小化网损、三相不平衡度和电压偏差为目标,考虑电压约束、反向潮流约束和中性线电流约束,建立了基于三相四线网络拓扑的多目标优化模型。通过改进节点导纳矩阵和模型凸性,降低问题求解的复杂度,利用CPLEX算法包进行求解,并基于某21节点三相四线低压配电网进行24 h多周期仿真,验证了所提方案的可行性和有效性。
模型部署是指其实际应用,用于实时监测电池的寿命。通过监测电池的实时运行数据,模型可以实时预测电池的寿命,并根据预测结果采取相应的维护管理措施。例如,当模型预测电池即将达到寿命时,可以及时更换或维修,从而有效延长电池的使用寿命,提高电网电池的可持续利用率和效率。为了扩大模型的应用范围,可以将其集成到电网管理系统中,与其他设备和系统进行实时数据交换和协同控制。
摘 要: 采煤机是综采工作面的核心装备,研发智能采煤机器人是实现综采工作面智能化的关键。 综合分析当前采煤机机器人化研究进程中的传感检测、位姿控制、速度控制、截割轨迹规划与跟 踪控制等技术的研究现状,提出研发智能采煤机器人必须破解的 “ 智能感知、位姿控制、速度控制、 截割轨迹规划与跟踪控制、位 − 姿 − 速协同控制 ” 五大关键技术,并给出解决方案。针对智能感知 问题,提出了构建智能感知系统思路,给出了智能采煤机器人智能感知系统的架构,实现对运行 状态、位姿、环境等全面感知,为智能采煤机器人安全、可靠运行提供保障;针对位姿控制问题, 提出了智能 PID 位姿控制思路,给出了改进遗传算法的 PID 位姿控制方法,实现了智能采煤机器 人位姿精准控制;针对速度控制问题,提出了融合 “ 力 − 电 ” 异构数据的截割载荷测量思路,给出 了基于神经网络算法的截割载荷测量方法,实现了截割载荷的精准测量;提出牵引与截割速度自 适应控制思路,给出了人工智能算法牵引与截割速度决策方法和滑模自抗扰控制的牵引与截割速 度控制方法,实现了智能采煤机器人速度精准自适应控制;针对截割轨迹规划与跟踪控制问题, 提出了截割轨迹精准规划思路,给出了融合地质数据和历史截割数据的截割轨迹规划模型,实现 了截割轨迹的精准规划;提出了截割轨迹精准跟踪控制思路,给出了智能插补算法的截割轨迹跟 踪控制方法,实现了智能采煤机器人截割轨迹高精度规划与精准跟踪控制;针对 “ 位 − 姿 − 速 ” 协同 控制问题,提出了 “ 位 − 姿 − 速 ” 协同控制参数智能优化思路,给出了基于多系统互约束的改进粒子 群 “ 位 − 姿 − 速 ” 协同控制参数优化方法,实现了智能采煤机器人智能高效作业。深入研究五大关键 技术破解思路,有利于加快推动研发高性能、高效率、高可靠的智能采煤机器人。
如何自主规划出协同运动轨迹并及时准确地控制舰载机的运动是提升整体甲板作业效率的关键。本文主要讨论的问题是多舰载机协调轨迹规划策略及牵引机与舰载机的协同控制。首先,建立无拖杆牵引系统运动学模型和三自由度动力学模型;其次,提出一种飞机系统协同进化机制以确保多飞机协调轨迹规划并基于混合RRT∗算法生成适应于牵引机系统的轨迹;其次,在不完全约束和各种物理条件约束下,设计双层闭环控制器实现甲板上牵引机系统的轨迹跟踪。外层模型预测控制器有效控制载机与牵引车的协同运动,内层基于自适应模糊PID控制的力矩控制策略严格保证系统的稳定性。仿真结果表明,与反步控制和LQR算法相比,该控制器具有更快、更精确的控制速度,对有初始偏差的直线轨迹、大曲率正弦曲线、甲板上的复杂轨迹具有更强的鲁棒性。
对执行协作任务的多车辆系统控制的研究可以追溯到 20 世纪 80 年代末,最初始于移动机器人领域(有关更详细的历史,请参阅 [37])。得益于廉价可靠的无线通信系统的发展,该领域的研究在 20 世纪 90 年代大幅增加。加州的先进交通和公路合作伙伴 (PATH) 项目 [2] 演示了多辆汽车以“车队”形式一起行驶,随后其他高速公路自动化项目 [18, 10] 也纷纷跟进。在 20 世纪 90 年代末和 21 世纪初,多架飞机(尤其是无人机)的协同控制成为美国一个非常活跃的研究领域 [3],推动了进一步的发展。在过去十年中,该研究领域蓬勃发展,许多新系统被提出用于从军事战斗系统到移动传感器网络再到商业公路和航空运输系统等应用领域。本文旨在对多车辆系统协同控制的一些最新研究进行调查。我们重点关注过去二十年的研究,并附上一些在此之前工作的历史记录。为了帮助集中调查的主题,我们专注于协同完成共享任务的多车辆系统的控制。还有其他几篇关于协同控制的文献调查可以补充本文(例如,参见 [37])。
摘要:针对混合动力船舶推进系统输出功率和负载需求具有较大的波动性和不确定性,本文提出了一种船舶推进系统分层协同控制能量管理方案。在第一层控制方案中,对传统扰动算法进行改进,增加振荡检测机制、确立动态扰动步长,实现最大功率点跟踪控制的实时稳定性。在第二层控制方案中,引入功率敏感度因子和电压电流双闭环控制器,通过设计基于动态下垂系数的两层协调控制策略,解决了负载切换引起的电压、频率偏差问题。在第三层控制方案中,由于最优调度功能的需要,从引入突变因子、改进速度公式、重新初始化策略3个方面对多目标粒子群优化算法进行改进。与其他算法的对比,证明了该算法在日前优化调度策略中的有效性。验证了所提分级协同优化控制方案的优越性,电能损耗降低39.3%,总体跟踪时间延长15.4%,柴油发电机组环境成本降低8.4%,该控制策略解决了稳态振荡阶段和偏离跟踪方向的问题,能有效抑制电压和频率波动。
摘要:针对混合动力船舶推进系统输出功率和负载需求具有较大的波动性和不确定性,本文提出了一种船舶推进系统分层协同控制能量管理方案。在第一层控制方案中,对传统扰动算法进行改进,增加振荡检测机制、确立动态扰动步长,实现最大功率点跟踪控制的实时稳定性。在第二层控制方案中,引入功率敏感度因子和电压电流双闭环控制器,通过设计基于动态下垂系数的两层协调控制策略,解决了负载切换引起的电压、频率偏差问题。在第三层控制方案中,由于最优调度功能的需要,从引入突变因子、改进速度公式、重新初始化策略3个方面对多目标粒子群优化算法进行改进。与其他算法的对比,证明了该算法在日前优化调度策略中的有效性。验证了所提分级协同优化控制方案的优越性,电能损耗降低39.3%,总体跟踪时间延长15.4%,柴油发电机组环境成本降低8.4%,该控制策略解决了稳态振荡阶段和偏离跟踪方向的问题,能有效抑制电压和频率波动。
背景 Covid-19 对世界社会经济参数产生了无法量化的负面影响。迅速发现用于对抗这种流行病的疫苗是一个巨大的科学突破。 研究目的 该研究评估了尼日利亚成年人接受 Covid-19 疫苗的意愿,并阐明了影响此类决策的因素。 方法 在尼日利亚夸拉州伊洛林使用多阶段随机抽样技术招募的 400 名受访者中,采用横断面设计。使用预先测试的访谈员管理的半结构化问卷收集数据。进行了描述性统计和推断性统计。 结果 受访者的平均年龄±SD 为 40.85±13.75,其中 215 人(53.7%)为男性。对 Covid-19 有良好了解的人有 321 人(80.3%),但很少有受访者对其病因存在误解。 360 名(90%)受访者对 Covid-19 疫苗接种持积极态度,278 人(69.5%)愿意接种疫苗。受访者对 Covid-19 的了解和对疫苗接种的态度是决定其是否愿意接种疫苗的主要因素。结论尼日利亚政府迫切需要利用人民的积极态度全面实施其 covid-19 疫苗接种政策,以确保有效覆盖和公平获得革命性的 Covid-19 疫苗。应持续开展对其他预防措施实践的宣传运动,以产生协同控制努力。卢旺达医学健康科学杂志 2022;5(2):127-140 _____________________________________________________________________________________________________________ 关键词:Covid-19、疫苗、意识、疫苗犹豫、态度、知识、尼日利亚
黑色素瘤细胞的抽象背景表型异质性有助于耐药性,增加的转移和免疫逃避性疾病。各自的机制已被据报道,以塑造广泛的肿瘤内和肿瘤间表型异质性,例如IFNγ信号传导和对侵入性过渡的增殖,但是它们的串扰如何影响肿瘤的进展仍然很大程度上难以捉摸。在这里,我们将动态系统建模与散装和单细胞水平的转录组数据分析整合在一起,以研究黑色素瘤表型异质性背后的基本机制及其对适应靶向治疗和免疫检查点抑制剂的影响。我们构建了一个最小的核心监管网络,该网络涉及与此过程有关的转录因子,并确定该网络启用的表型景观中的多个“吸引子”。在三种黑色素瘤细胞系(Malme3,SK-MEL-5和A375)中,通过IFNγ信号传导和增生对浸润性转变对PD-L1的协同控制进行了模型预测。结果我们证明,包括MITF,SOX10,SOX9,JUN和ZEB1的调节网络的新兴动态可以概括有关多种表型共存的实验观察结果(增殖性,神经CREST,类似于神经crest,类似于Invasive),以及可转化的细胞检查和响应的响应,包括对响应的响应,并在响应中进行了响应,并在响应中置于某些响应中,并在构成方面构成了对响应的响应。这些表型具有不同水平的PD-L1,在免疫抑制中驱动异质性。PD-L1中的这种异质性可以通过这些调节剂与IFNγ信号的组合动力学加剧。我们关于黑色素瘤细胞逃避靶向治疗和免疫检查点抑制剂的侵入性转变和PD-L1水平的变化的模型预测在来自体外和体内实验的多个RNA-SEQ数据集中得到了验证。结论我们的校准动力学模型提供了一个测试组合疗法的平台,并为转移性黑色素瘤的治疗提供了理性的途径。可以利用对PD-L1表达,侵入性过渡和IFNγ信号传导增殖的串扰的改进理解,以改善对治疗耐药和转移性黑色素瘤的临床管理。