摘要 — 演讲首先将模块化、功能集成、分散化、混合化和协同关联确定为未来电力电子转换器性能改进的关键概念(“X 概念”)。接下来,讨论了苏黎世联邦理工学院电力电子系统实验室在具有电压或电流直流链路(即升压-降压或降压-升压功能)的双向三相 AC/DC 转换器系统领域的最新研究成果。这两个系统的实现都基于 PFC 整流器输入级和 DC/DC 转换器输出级的“协同控制”,并考虑了 400V 线对线输入、200V 至 1000V 的超宽输出电压范围和 10kW 的额定功率。所述硬件演示器具有高效率和高功率密度,因此可以作为电气隔离 EV 充电器的标准构建块。此外,根据综合实验分析的结果,这两个系统都非常适合用作未来基于 RCD 的非隔离 EV 充电器。演讲最后强调了从线性经济向循环经济转变的紧迫性,未来的电力电子转换器设计也需要考虑这一点,以确保可持续地实现 2050 年净零二氧化碳目标。
摘要:针对多导弹追击—规避问题,本文提出了一种基于毁伤效能模型和虚拟力法的最优毁伤效能协同控制策略。首先,区别于传统追击—规避问题中过于理想的假设,建立并求解最大化毁伤效能的优化问题,使最优毁伤效能策略更具有实际应用意义。其次,提出一种改进的虚拟力法来获得该最优毁伤效能控制策略,解决了高复杂度毁伤函数带来的数值求解挑战。第三,该策略基于制导一体化引信技术,设计自适应增益,在不可预测的拦截条件下实现稳健的最大毁伤效能。最后,通过数值仿真验证了所提策略的有效性和稳健性。
利用光伏无功功率和储能有功功率可以解决光伏接入低压配电网带来的电压越限、网损、三相不平衡等问题,但低压配电网三相四线结构给潮流计算带来困难。为实现通过潮流最优来利用光伏,提出一种基于三相四线系统潮流最优的低压配电网光伏储能协同控制方法。考虑电压和电流的幅值和相位角,采用三相四线节点导纳矩阵建立低压配电网网络拓扑结构,以最小化网损、三相不平衡度和电压偏差为目标,考虑电压约束、反向潮流约束和中性线电流约束,建立了基于三相四线网络拓扑的多目标优化模型。通过改进节点导纳矩阵和模型凸性,降低问题求解的复杂度,利用CPLEX算法包进行求解,并基于某21节点三相四线低压配电网进行24 h多周期仿真,验证了所提方案的可行性和有效性。
对执行协作任务的多车辆系统控制的研究可以追溯到 20 世纪 80 年代末,最初始于移动机器人领域(有关更详细的历史,请参阅 [37])。得益于廉价可靠的无线通信系统的发展,该领域的研究在 20 世纪 90 年代大幅增加。加州的先进交通和公路合作伙伴 (PATH) 项目 [2] 演示了多辆汽车以“车队”形式一起行驶,随后其他高速公路自动化项目 [18, 10] 也纷纷跟进。在 20 世纪 90 年代末和 21 世纪初,多架飞机(尤其是无人机)的协同控制成为美国一个非常活跃的研究领域 [3],推动了进一步的发展。在过去十年中,该研究领域蓬勃发展,许多新系统被提出用于从军事战斗系统到移动传感器网络再到商业公路和航空运输系统等应用领域。本文旨在对多车辆系统协同控制的一些最新研究进行调查。我们重点关注过去二十年的研究,并附上一些在此之前工作的历史记录。为了帮助集中调查的主题,我们专注于协同完成共享任务的多车辆系统的控制。还有其他几篇关于协同控制的文献调查可以补充本文(例如,参见 [37])。