图 1. 不同 PHBV 膜表面和横截面 SEM 显微照片:a) PHBV_70:30 (CF:DMF)、b) PHBV_85:15 (CF:DMF)、c) PHBV_DMF、d) PHBV_DMSO;横截面:e) PHBV_70:30 (CF:DMF)、f) PHBV_85:15 (CF:DMF)、g) PHBV_DMF、h) PHBV_DMSO。所有图像的比例均为 20 µm。i) 不同 PHBV 膜的孔隙度。
记录的版本:此预印本的一个版本于2024年8月31日在自然通讯上发布。请参阅https://doi.org/10.1038/s41467-024-52084-0。
抽象磁传感设备是极为重要的检测器,这些检测器被使用了几种重要且有用的应用。几何磁磁性(EMR)是与非磁性半导体 - 金属杂交结构相关的几何磁磁性,并受几何形状的影响。是洛伦兹力的结果,在半导体 - 金属杂交结构中,当前的路径从金属(没有磁场)变为半导体(在磁场的征服下)是EMR现象的关键,即一旦将金属放入半导体中,它就可以用作短路,大多数应用的电流通过金属的无机性移动,几乎全部的半导体 - 金属杂化结构的全部阻力下降到小于均质半导体的值小于均质的磁场,在其他磁场上,在其他磁场上,在其他磁场上都在磁场上,在磁场上,在磁场上进行了启动,在磁场上既有磁场,又在磁场上进行了启动的途径。并且整个电阻变成了相当高的幅度,取决于设备的几何形式。变量控制这些现象是金属和半导体电导率,半导体载体迁移率和装置几何形状。在本综述中,概述了EMR现象历史记录,变量控制IT,材料和应用程序的应用。
准一维(Q1D)自旋链体系由于其量子磁性而在高密度信息存储设备、量子信息和计算机中有着巨大的潜在应用。人们在 ANb 2 O 6(A = Mn、Fe、Co 或 Ni)化合物中研究了其低维磁行为,其结构和磁性非常有趣,因为该系统呈现出弱相互作用的伊辛链,从而导致了这种准一维磁序。我们的研究结合了比热和磁测量;X 射线和中子衍射(ND)。在这项工作中,我们提出了一种 Co/Ni 正交结构,称为铌矿,它与 Pbcn 空间群结晶,其分子式为 Co 0.4 Ni 0.6 Nb 2 O 6 。Co 取代 Ni 导致晶格体积连续减小,从而保持正交晶体结构。磁化率和比热测量表明,由于链间相互作用较弱,在 3.4 K 时会出现反铁磁序。磁性离子的部分取代往往会改变在 CoNb 2 O 6 和 NiNb 2 O 6 中观察到的磁序。最后,我们展示了这种磁结构随 Ni-Co 取代而发生的变化。
图1:TBRPPCO在PB(111)和BCS能量间隙的光谱上吸附。(a)Pb上的TBRPPCO分子岛的STM图像(111),中央CO原子显得最明亮(偏置电压:100 mV,隧道电流:50 PA,比例尺:1 nm)。超结构由1和2跨越。岛边缘的单个分子由虚线圆表示。白色箭头标记为110⟩方向。(b)孤立的TBRPPCO分子的STM图像(100 mV,50 PA,比例尺:1 nm)。(c)TBRPPCO在PB上计算出的松弛吸附几何形状(111)。(d)D I/ D V的光谱在干净的Pb上方的超导PB尖端(111)上方获得,并在嵌入岛上的TBRPPCO的Co Atom Center上,并在基板露台上分离(反馈环参数:10 mV,50 PA)。h +,h - 表示由于尖端和样品BCS DOS的对齐的冷凝峰引起的与隧道相关的光谱峰的高度; δ标记由冷凝峰距离定义的能隙宽度。(e)TBRPPCO岛(100 mV,50 PA,比例尺:2 nm)的STM图像,带有指示的特性镜检查位点。(f)宽度δ(反向三角形)和不对称η(三角形)从(e)中标记的十个分子上获得的d i/ d v光谱获得。阴影区域描绘了δ的不良边缘。
Ferromagnetic quantum criticality Manuel Brando # , Michael Nicklas ## , Michael Baenitz, Jacintha Banda, Robert Borth, Christoph Geibel, Daniel Hafner, Sandra Hamann, J ö rg Sichelschmidt, Frank Steglich, Alexander Steppke During the last years strong efforts have been made in studying quantum criticality, in particular in ferromagnetic (FM)金属系统。在这个研究所完成了实质性的工作,该研究所质疑了90年代后期发展的理论,并有助于对该领域进行了新的促进。在全面的评论文章中总结了该研究领域的艺术状况。最近,我们发现基于CE和YB的近晶石铁磁体主要沿着晶状体Kramers Doublet的磁性硬方向由Crystalline Electric Field确定。这种特殊的现象被认为是罕见的,而是标准案例,可以通过所谓的按序列理论来解释。一个例外是强烈的各向异性准二维cerh 6 ge 4。对其在静水压力下的性质的系统研究表明,在这种化合物中存在清洁的FM-QCP,在该化合物中发现了“奇怪的金属行为”。这仅在抗磁磁系统中才出现,而长期以来在铁磁铁中是不可能的。
为了最大程度地减少与强制施用相关的纵向成像和潜在风险的辐射暴露,采取了二维(2D)非对比度轴向轴向单板CT CT,而不是在临床实践中常见的三维(3D)体积CT。然而,很难在纵向成像中找到相同的横截面位置,因此在不同年内捕获的器官和组织存在实质性变化,如图1。在2D腹部切片中扫描的器官和组织与身体成分措施密切相关。因此,增加的位置差异可以准确地分析身体组成的挑战。尽管有这个问题,但尚未提出任何方法来解决2D切片中位置差异的问题。我们的目标是减少位置方差在人体组成分析中的影响,以促进更精确的纵向解释。一个主要的挑战是,在不同年内进行的扫描之间的距离是未知的,因为该切片可以在任何腹部区域进行。图像注册是在其他情况下用于纠正姿势或位置错误的常用技术。但是,这种方法不适合解决2D采集中的平面运动,其中一种扫描中出现的组织/器官可能不会出现在另一种扫描中。基于参考。13,图像协调方法分为两个主要组:深度学习和统计方法。值得注意的统计方法包括战斗14及其变体,15-17 Convbat,18和贝叶斯因子回归。19然而,与生成模型不同,统计方法通常缺乏对我们方案至关重要的生成能力。基于深度学习的现代生成模型最近在生成和重建高质量和现实的图像方面取得了重大成功。20 - 26生成建模的基本概念是训练生成模型以学习分布,以便生成的样品 ^ x〜pdð ^xÞ来自与训练数据分布x〜pdðxÞ的分布相同。27通过学习输入和目标切片之间的联合分布,这些模型可以有效地解决注册的局限性。变化自动编码器(VAE),28是一种生成模型,由编码器和解码器组成。编码器将输入编码为可解释的潜在分布,解码器将潜在分布的样本解码为新数据。生成对抗网络(GAN)20是另一种类型的生成模型,其中包含两个子模型,一个生成新数据的生成器模型和一个区分实际图像和生成图像的歧视器。通过玩这个两人Min-Max游戏,Gans可以生成逼真的图像。Vaegan 29将GAN纳入VAE框架中,以创建更好的合成图像。通过使用歧视器来区分真实图像和生成的图像,Vaegan可以比传统的VAE模型产生更真实和高质量的图像。但是,原始的vaes和gan遭受了缺乏对产生图像的控制的局限性。有条件的GAN(CGAN)30和CONDINATION VAE(CVAE)31解决了此问题,该问题允许生成具有条件的特定图像,从而对生成的输出提供了更多控制。但是,这些条件方法中的大多数都需要特定的目标信息,例如目标类,语义图或热图,在测试阶段32作为条件,这在我们的情况下是不可行的,因为我们没有任何可用的直接目标信息。
微生物驱动全球碳循环1,并可以与宿主生物体建立象征关系,从而影响其健康,衰老和行为2 - 6。微生物种群通过改变可用的代谢物池和专门的小分子7、8的产生与不同的生态系统相互作用。这些群落的巨大遗传潜力被人相关的微型iSms举例说明,该微生物ISM的编码是人类基因组9、10的大约100倍。然而,这种代谢潜力在现代的未纳入代谢组学实验中仍未被反射,其中通常<1%的注释分子可以归类为微生物。这个问题特别影响质谱(MS)基于非靶向代谢组学,这是一种通过微生物11所产生或修饰的分子11的常见技术,该技术在复杂生物学样品的光谱注释中著名地挣扎。这是因为大多数光谱参考文献都偏向于原代代谢产物,药物或工业化学品的市售或以其他方式的标准。即使在注释代谢物时,也需要进行广泛的文献搜索,以了解这些分子是否具有微生物起源并识别各自的微生物生产者。公共数据基础,例如Kegg 12,Mimedb 13,Npatlas 14和Lotus 15,可以帮助进行这种解释,但它们大部分限于已建立的,很大程度上基因组所涉及的代谢模型或完全表征和发行的分子结构。此外,虽然旨在从机械上开发了旨在询问肠道微生物组的靶向代谢组学努力16,但它们仅着眼于相对较少的商业可用的微生物分子。因此,尽管MS参考文库不断扩大,但大多数微生物化学空间仍然未知。为了填补这一空白,我们已经开发了Microbemasst(https://masst.gnps2.org/microbemasst/),这是一种利用的搜索工具