现在,即使 M 不光滑,我们也可以在环境光滑空间上使用局部化。我们只需弄清楚 MT , → f MT 是什么。空间 M n 参数化了长度为 n 的 C 3 的子方案,你可以将其视为描述余维数为 n 的 C [ x 1 , x 2 , x 3 ] 的理想相同。T 的动作是通过缩放变量。理想 I 怎么能通过缩放变量来固定呢?我认为只有当 I 是单项式理想(即由单项式生成)时才有可能。这是因为 xd 是 T 的特征函数,具有不同的权重,例如 x 3 1 x 2 具有权重 t − 3 1 t − 1 2 。任何单项式都由权重唯一确定,而不变理想必须由特征函数生成。在二维中,任何这样的理想都可以通过从表中选择一些单项式来指定
摘要 — 近年来,局部无网格法在数值模拟领域越来越受欢迎。这主要是因为它们可以对分散节点进行操作,并且可以直接控制近似阶和基函数。在本文中,我们分析了两种流行的局部强形式无网格法变体,即使用增强单项式的多谐波样条 (PHS) 的径向基函数生成有限差分 (RBF-FD) 和仅使用单项式的加权最小二乘 (WLS) 方法。我们的分析重点关注在二维和三维域中对分散节点计算的数值解的准确性和稳定性。我们表明,虽然当低阶近似足够时 WLS 变体是更好的选择,但对于高阶近似,RBF-FD 变体表现出更稳定的行为和更高的数值解准确性,但代价是更高的计算复杂度。
摘要:借助量子信息论中的技术,我们开发了一种方法,可以系统地获得多个矩阵变量中的算子不等式和恒等式。它们采用迹多项式的形式:涉及矩阵单项式 X α 1 ··· X α r 及其迹 tr ( X α 1 ··· X α r ) 的多项式表达式。我们的方法依赖于将对称群在张量积空间上的作用转化为矩阵乘法。因此,我们将极化的凯莱-汉密尔顿恒等式扩展为正锥上的算子不等式,用 Werner 状态见证来表征多线性等变正映射集,并在张量积空间上构造置换多项式和张量多项式恒等式。我们给出了与量子信息论和不变理论中的概念的联系。
𝑡 次三角立方规则是环面上的点集,在这些点集上,总和可重现整个环面上 𝑡 次单项式的积分。它们可以被认为是环面上的 𝑡 -设计。受量子力学的射影结构的启发,我们发展了射影环面上的 𝑡 -设计的概念,令人惊讶的是,它们的结构比整个环面上的对应设计要严格得多。我们提供了这些射影环面设计的各种构造,并证明了它们的大小和结构特征的一些界限。我们将射影环面设计与一系列不同的数学对象联系起来,包括来自加法组合学领域的差集和 Sidon 集、来自量子信息论的对称、信息完备的正算子值测度 (SIC-POVM) 和相互无偏基 (MUB) 的完备集(据推测与有限射影几何有关)以及某些根格的水晶球序列。利用这些联系,我们证明了密集 𝐵 𝑡 mod 𝑚 集的最大大小的界限。我们还使用射影环面设计来构建量子态设计系列。最后,我们讨论了许多关于这些射影环面设计的性质的未解决的问题,以及它们与数论、几何和量子信息中的其他问题的关系。
自旋量子液体是直到零温[1]都检测不到磁对称破缺序的系统,而是存在拓扑序[2]。理论方面,有许多模型哈密顿量存在量子自旋液体状态[3,4]。规范对称性在这些模型中很常见,无论是离散的还是连续的,内在的还是突现的。许多规范模型,如 Z 2 环面代码 [3] 和分形模型,如 X 立方体 [5,6],都是使用多自旋相互作用定义的。本文我们表明,这些模型中精确的局部 Z 2 规范对称性可以仅由两自旋相互作用产生。在两自旋哈密顿量的某些低能量极限下可以产生有效的多自旋相互作用并不意外;新颖之处在于我们讨论的对称性是精确的。我们阐明了组合规范对称性的概念,它解释了为什么可以构造具有精确 Z 2 规范对称性的局部两自旋哈密顿量。保持代数的变换和单项式矩阵——我们从一组 N 个自旋 1/2 自由度开始,比如我们熟悉的 N 个位点晶格上的自旋模型。自旋算子是泡利矩阵 σ α i ,其中 α = x , y , z 且 i = 1 , . . . , N 。不同位点上的自旋交换,而相同位点上的自旋满足通常的角动量代数。让我们问一个简单的问题:这 3 N 个算子的哪些变换可以保持所有的交换和反交换关系?对于 N 玻色子或费米子,这个问题很容易回答;允许的单粒子变换集属于酉群 U ( N ),因为需要满足对易关系或反对易关系。但对于自旋来说,问题更难;不能简单地混合不同自旋的空间分量并保留位点内和位点间的代数。N 个自旋的希尔伯特空间是 2 N 维的,这个空间中允许的算子是 2 N × 2 N 酉矩阵,对应于群 SU (2 N )。自旋算子的一般变换 σ ai → U σ ai U † 保留了代数,但也同时作用于许多自旋:它将 3 N 单自旋算子 σ ai 与 SU (2 N ) 的其他(多自旋)2 2 N − 1 − 3 N 生成器混合。