量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4]。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量关系不大,这可能会阻碍将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性[5]。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法[6 – 8]。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。在这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法
使用脉冲电沉积法制造纯镍和纳米复合镍-SI 3 N 4涂层。制造过程的初始条件是当电流密度为4 a.dm -2,占空比为50%,脉冲频率为10 Hz。原子力显微镜(AFM)用于执行评估每个涂层表面的任务。该实验的目标是通过增加每个参数,然后将结果与被认为是基线的条件进行比较,从而更好地了解情况。由于已经进行了观察结果,似乎平均正方形和根平均平均平均平均粗糙度高于其纯镍构成的纳米复合镍涂层的平均粗糙度。平均间距和波浪数量数据表明,在表面上存在偏爱的成核位点的任何位置都增加了。无论位置如何,情况就是这种情况。这些发现得到了以下事实的支持:两个指标都表现出向上的趋势。
利用电磁 (EM) 场进行的无线通信是人体周围可穿戴设备之间信息交换的支柱。然而,对于植入式设备,电磁场会在组织中被大量吸收,而其他传输模式(包括超声波、光学和磁电方法)会由于一种能量形式转换为另一种能量形式而导致大量的转导损耗,从而增加了整体的端到端能量损耗。为了解决脑植入物中无线供电和通信的挑战以及低端端通道损耗,我们提出了双相准静态脑通信 (BP-QBC),通过使用电准静态 (EQS) 信号,避免了因没有场模态转换而导致的转导损耗,在通道长度约为 55 毫米的情况下实现 < 60dB 的最坏情况端到端通道损耗。 BP-QBC 利用基于偶极耦合的信号在脑组织内传输,在发射器 (TX) 中使用差分激励,在接收器 (RX) 中使用差分信号拾取,同时通过阻断流经脑组织的任何直流电流路径,在 1MHz 载波频率下提供比传统人体电流通信 (G-HBC) 低 ~41 倍的低功耗。由于通过人体组织的电信号传输是电准静态的,频率高达几十 MHz,因此 BP-QBC 可实现从植入物到外部可穿戴设备的可扩展 (bps-10Mbps) 占空比上行链路 (UL)。BP-QBC TX 的功耗在 1Mbps 时仅为 0.52 μW(占空比为 1%),这在从可穿戴设备中枢通过 EQS 脑通道到植入物的下行链路 (DL) 中收集的功率范围内,外部施加的电流小于 ICNIRP 安全限值的 1/5。此外,BP-QBC 消除了对颅下询问器/中继器的需求,因为它由于没有场传导而提供了更好的信号强度。这种低端到端通道损耗和高数据速率是由一种全新的大脑通信和供电方式实现的,在神经生物学研究、脑机接口、电疗和联网医疗领域具有深远的社会和科学影响。
利用电磁 (EM) 场进行的无线通信是人身周围可穿戴设备之间信息交换的支柱。然而,对于植入式设备,电磁场会在组织中产生大量吸收,而其他传输模式(包括超声波、光学和磁电方法)会由于一种能量形式转换为另一种能量形式而导致大量的转导损耗,从而增加了整体的端到端能量损耗。为了解决脑植入物中无线供电和通信的挑战并实现低端端通道损耗,我们提出了双相准静态脑通信 (BP-QBC),通过使用电准静态 (EQS) 信号,在通道长度约为 55 毫米的情况下实现 < 60dB 的最坏情况端到端通道损耗,从而避免了因没有场模态转换而导致的转导损耗。 12 BP-QBC 利用基于偶极耦合的信号在脑组织内传输,在发射器 (TX) 处使用差分激励,在接收器 (RX) 处拾取差分信号,同时通过阻断通过脑组织的任何直流电流路径,在 1MHz 载波频率下提供约 41 倍的低功耗,相对于传统的人体电流通信 (G-HBC)。由于通过人体组织的电信号传输是电准静态的,频率高达数十 MHz,因此 BP-QBC 允许从植入物到外部可穿戴设备的可扩展 (bps-10Mbps) 占空比上行链路 (UL)。 BP-QBC TX 的功耗在 1Mbps(占空比为 1%)时仅为 0.52 μW,这在从可穿戴中枢通过 EQS 脑通道到植入物的下行链路 (DL) 中收集的功率范围内,外部施加的电流小于 ICNIRP 安全限值的 1/5。此外,BP-QBC 消除了对颅下询问器/中继器的需求,因为它由于没有场传导而提供了更好的信号强度。如此低的端到端通道损耗和高数据速率是由一种全新的脑部通信和供电模式实现的,对神经生物学研究、脑机接口、电药物和互联医疗保健等领域具有深远的社会和科学影响。
量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4] 。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量不成比例,这可能会阻碍实现将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性 [5] 。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法 [6 – 8] 。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法
除了板载上电复位电路外,PRDN/RST 引脚还用作 TPEX 的主复位。PRDN/RST 必须驱动为低电平至少两微秒才能发生复位。PRDN/RST 引脚还可用于将 TPEX 置于非活动状态,从而使设备消耗更少的电量。此功能在电池供电或低占空比系统中很有用。将 PRDN/RST 驱动为低电平会复位 TPEX 的内部逻辑并使设备进入空闲模式。在此模式下,双绞线驱动器引脚 (TXD+/–、TXP+/–) 驱动为低电平,AUI 引脚 (CI+/–、DI+/–) 驱动为高电平,LNKST 和 RXPOL 引脚处于非活动状态,XMT 和 RCV 为低电平。只要 PRDN/RST 有效,TPEX 就会保持空闲状态。在 PRDN/RST 上的信号上升沿之后,TPEX 会保持复位状态 10
SNR = 47 dBFS,f IN 高达 250 MHz,500 MSPS ENOB 为 7.5 位,f IN 高达 250 MHz,500 MSPS(−1.0 dBFS) SFDR = 79 dBc,f IN 高达 250 MHz,500 MSPS(−1.0 dBFS) 集成输入缓冲器 出色的线性度 DNL = ±0.1 LSB 典型值 INL = ±0.1 LSB 典型值 LVDS,500 MSPS(ANSI-644 级别) 1 GHz 全功率模拟带宽 片上基准电压源,无需外部去耦 低功耗 670 mW,500 MSPS—LVDS SDR 输出 可编程(标称值)输入电压范围 1.18 V p-p 至 1.6 V p-p,1.5 V p-p 标称值 1.8 V 模拟和数字电源操作 可选输出数据格式(偏移二进制、二进制补码、格雷码) 时钟占空比稳定器 集成数据采集时钟
产品描述SQ9910是PWM高效LED驱动器控制IC。它允许从85V AC到265V AC的电压来源的高亮度(HB)LED有效运行。SQ9910以高达300kHz的固定开关频率控制外部MOSFET。可以使用单个电阻对频率进行编程。LED字符串以恒定电流而不是恒定电压驱动,从而提供恒定的光输出和增强的可靠性。输出电流可以在几毫安之间进行编程,最高超过1.0a。SQ9910使用坚固的高压连接隔离过程,该过程可以承受最高500V的输入电压振荡。可以通过在SQ9910的线性调光控制输入下应用外部控制电压来编程到LED字符串到零和最大值之间的任何值。SQ9910提供了低频PWM DIMMing输入,该输入可以接受占空比为0-100%的外部控制信号,频率高达几千期应用程序电路
表 4 的注释:1. 必须注意适当的电流降额,以将结温保持在最高允许结温以下。2. 如果满足以下条件,则由于电源从交流 (AC) 转换为直流 (DC) 而产生的残余周期性变化(也称为“纹波”)是可以接受的: – 纹波电流的频率为 100Hz 或更高 – 每个周期的平均电流不超过最大允许直流正向电流 – 纹波的最大幅度不超过最大峰值脉冲正向电流 3. 占空比 ≤ 50%,脉冲宽度为 5 毫秒。4. 如果这些事件的持续时间不超过 10 毫秒,反向电压的幅度不超过 5V,反向电流小于 220uA,则由于电气开关或电源中断而产生的瞬态反向电压和浪涌电流是可以接受的。5. 最长 10 秒的最大 5V 反向电压是可接受的使用寿命开始的一次性测试条件。
量子力学允许通过光学方法分发本质上安全的加密密钥。双场量子密钥分发是实现长距离光纤网络的最有前途的技术之一,但需要稳定双方通信信道的光长。在基于卷轴光纤的原理验证实验中,这是通过将量子通信与周期性稳定帧交错来实现的。在这种方法中,密钥流的较长占空比是以对信道长度的控制较松为代价的,并且在现实世界中使用此技术成功传输密钥仍然是一项重大挑战。利用源自频率计量的干涉测量技术,我们开发了一种同时进行密钥流和信道长度控制的解决方案,并在 206 公里现场部署的光纤上进行了演示,损耗为 65 dB。我们的技术将信道长度变化导致的量子比特误码率降低到 <1%,代表了现实世界量子通信的有效解决方案。