加利福尼亚州埃尔塞贡多和科罗拉多州科罗拉多斯普林斯——美国太空部队的空间系统司令部 (SSC) 和空间作战司令部 (SpOC) 通过快速反应开拓者 (RRT) 发射执行了加速时间表,以满足特定作战人员的需求。与 SpaceX 合作,猎鹰 9 号火箭于美国东部时间 12 月 16 日晚上 7 点 52 分(太平洋标准时间下午 4 点 52 分)从佛罗里达州布里瓦德县卡纳维拉尔角太空军站 40 号航天发射中心发射了这项国家安全太空发射 (NSSL) 任务,搭载全球定位系统 (GPS) III 太空飞行器 (SV) SV-07。此次任务成功展示了多个太空部队组织的复杂整合工作,从存储中取出现有的 GPS III 卫星,加速整合和运载火箭准备就绪,并快速处理发射。发射的成功证明了双重作战概念。对于 SSC 而言,确保太空进入 (AATS) 通过在不到五个月的时间内执行 NSSL 级发射,成功展示并强调了其与工业界合作的敏捷性,以响应不断变化的国家需求。
摘要:2022 年 4 月 1 日,AlfaCrux CubeSat 由 Falcon 9 Transporter-4 任务发射,这是 SpaceX 第四次专用小型卫星拼车计划任务,从佛罗里达州卡纳维拉尔角太空军站的 40 号航天发射台发射升空,进入 500 公里的太阳同步轨道。AlfaCrux 是一项业余无线电和教育任务,旨在在小型卫星任务的背景下提供学习和科学益处。这是一个理论和实践学习的机会,学习小型卫星的技术管理、系统设计、通信、轨道力学、开发、集成和操作。AlfaCrux 有效载荷是一种软件定义的无线电硬件,负责两项主要服务,即数字分组中继器和存储转发系统。在地面部分,已经开发了一个基于云计算的指挥和控制站,以及一个开放的在线平台,用于访问和可视化 AlfaCrux 遥测和用户数据和实验的主要信息。它还成为在轨数据库参考,可用于不同的研究,例如无线电传播、姿态重建、卫星传感器的数据驱动校准算法等。在此背景下,本文介绍了 AlfaCrux 任务、其主要子系统以及在早期轨道阶段取得的成就。本文还介绍和讨论了对航天器运行进行的科学和工程评估,以应对地面站的意外行为并更好地了解太空环境。
使命:为海军舰船、舰船系统和相关海军后勤系统提供全方位的研究和开发、测试和评估、分析、采购和舰队支持。具体重点是提供整合水面和水下车辆及相关系统所需的核心技术能力,开发和应用与船舶建筑和海洋工程相关的科学技术,并为海事行业提供支持。愿景:成为海军值得信赖的合作伙伴,为先进舰船和舰船系统确定和提供世界一流、创新且经济高效的解决方案,为作战人员提供技术解决方案,并让我们的舰队保持海上航行。 NSWC 卡德罗克分部在美国包括以下设施:x 卡德罗克分部总部(马里兰州西贝塞斯达)x 战斗舰艇分部(弗吉尼亚州诺福克)x 普吉特湾支队(华盛顿州西尔弗代尔)x 声学研究支队(爱达荷州湾景)x 声学试验支队(佛罗里达州卡纳维拉尔角)x 南佛罗里达海洋测量设施(佛罗里达州劳德代尔堡)x 威廉 B. 摩根大型空化通道(田纳西州孟菲斯)x 东南阿拉斯加声学测量设施(阿拉斯加州凯奇坎)
根据管理协议,NASA 的责任摘要:N/A 1.1 即将完成的任务里程碑时间表: ˆ 航天器发货:2023 年第一季度 ˆ 首次发射:2023 年第二季度 1.2 任务概述:Starfish Otter Pup 任务是一艘演示太空拖船,旨在测试低地球轨道 (LEO) 中的会合、近距操作和对接 (RPOD) 技术。Otter Pup 将与客户航天器(名为 Orbiter 的 Launcher Inc. 轨道转移飞行器 (OTV))分离、接近和对接。主要有效载荷由 Starfish Space 制造,包括 Nautilus 捕获机制、CETACEAN 相对导航软件和 CEPHALOPOD 制导和控制软件。其他有效载荷(Exotrail SA 提供的电力推进推进器和 Redwire 提供的用于相对导航的 Argus 相机)集成到基于 Astro Digital Micro+ 设计的航天器总线中。这种标准化卫星平台使用反作用轮、磁矩线圈、星跟踪器、磁力计、太阳传感器和陀螺仪,无需使用推进剂即可实现精确的 3 轴指向。1.3 运载火箭和发射场:托管在 Launcher Orbiter OTV 上,由 SpaceX Falcon 9 拼车任务发射,发射场为卡纳维拉尔角太空发射中心。1.4 拟议的初始发射日期:2023 年第二季度,SpaceX Transporter-8
外面很黑,而且越来越黑。鸟儿栖息,汽车前灯亮着,但这是春天的早晨 09:30……2015 年 3 月 20 日星期五,北欧出现了令人惊叹的日偏食。这深刻地提醒我们太阳系的力量和威严。也许命运注定了,这期《航空测试国际》杂志将独家采访朱莉·克莱默·怀特,她是深太阳系载人猎户座项目的高级工程师。2014 年 12 月 5 日,猎户座飞船搭载德尔塔 IV 重型火箭从卡纳维拉尔角发射升空:这是一次绕地飞行 2 圈、持续 4 小时的飞行,测试了许多对安全至关重要的系统,包括发射和高速再入系统,如航空电子设备、姿态控制、降落伞和隔热罩。未来,猎户座飞船将搭载美国宇航局的新型重型火箭太空发射系统发射。这次试飞标志着太空旅行的新纪元。这表明了迈出这一步的极其重要的决心。“我是在 1985 年挑战者号航天飞机悲剧的阴影下加入 NASA 的,”Kramer 说。“我亲眼目睹了人们致力于解决当天出现的问题并确保不再发生这种事情的决心。从那时起,对 NASA 努力实现的目标(工程卓越和诚信)的热情成为了我所做的一切的试金石。我知道这些人生教训并不是 NASA 独有的。但要具备这些价值观,并注重团队合作和个人
在基于物理的飞行动力学模拟中,描述和评估了双飞机平台 (DAP) 概念的基准配置,该模拟用于为期两个月的任务,作为佛罗里达中部低层平流层的通信中继,距离奥兰多市中心 150 英里。DAP 配置具有两个大型滑翔机式(翼展 130 英尺)无人机,它们通过一条可调节的长电缆连接(总可伸缩长度 3000 英尺),可利用可用的风切变有效地航行而无需推进。使用机载 LiDAR 风廓线仪预测风分布被发现是必要的,以使平台能够通过找到平台上足够的风切变来有效调整飞行条件以保持航行。与传统的太阳能飞机一样,该飞机从太阳能电池中获取电力,但当风切变过多时,它还会使用螺旋桨作为涡轮机来获取风能。 60,000 英尺附近长达一个月的大气剖面(间隔 3-5 分钟)来自卡纳维拉尔角 50 Mhz 多普勒雷达风廓线仪测量的存档数据,并用于 DAP 飞行模拟。对这些数据集的粗略评估表明,DAP 航行所需的风切变持续存在,这表明即使受到适度上升/下降率的限制,DAP 也可能航行超过 90% 的长达一个月的持续时间。DAP 的新型制导软件使用非线性约束优化技术来定义航点
1 一级方程式赛车在快速转弯时抵抗高 g 力。摄影:Oscar Sant'ın。 ... ....................................................................................................................8 5 美国宇航局兰利研究中心的科学家设计的空间站。图片来自美国宇航局历史部门....................................................................................................................9 6 分割的弧形地板表示。取自 [2] ....................................................................................................9 7 电影《2001:太空漫游》中的空间站 V。[3] ....................................................................................10 8 电影《星际穿越》中的奥尼尔圆柱体空间站 [2014] ....................................................................10 9 斯坦福环面插图...................................................................................................................................................11 10 鹦鹉螺-X 航天器表示。 . ... ... . ....。 ... ... 22 17 带潮汐力限制的人工重力图。取自 YouTube 频道 Cool Worlds 的视频文章:人工重力。 23 18 带垂直科里奥利力限制的人工重力图。取自 YouTube 频道 Cool Worlds 的视频文章:人工重力...................................................................................................................................................................................................................................................... 24 19 带倾斜科里奥利力限制的人工重力图。取自 YouTube 频道 Cool Worlds 的视频文章:人工重力...................................................................................................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . 25 20 科里奥利效应表示。图片取自 [6]。 . . . . . . . . . . . . . . . . 26 21 带运河疾病限制的人工重力图。取自 YouTube 频道 Cool Worlds 的视频文章:人工重力。 28 22 视重:案例 1 . . . . . . . . . . . . . . . . . . . . . . . 32 23 视重:案例 2 . . . . . . . . . . . . . . . . . . . 33 24 视重:案例 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 25 猎鹰 1 号首飞尝试 . . . . . . . . . . . . . . . . . . . . . .39 26 猎鹰 9 号从卡纳维拉尔角发射。图片来源:SpaceX。 ...
在标题页上,从左上角开始顺时针方向:1.2021 年 5 月 18 日,在一次多国演习中,两架美国空军 F-35A Lightning II 飞机和两架法国阵风飞机在法国上空飞行时打破队形。图片来源:空军中士。亚历山大·库克。2.这张 2022 年 7 月 12 日曝光的图像由美国宇航局的詹姆斯·韦伯太空望远镜在红外光下拍摄,显示了船底座星云中附近年轻的恒星形成区域 NGC 3324,揭示了之前被遮蔽的恒星诞生区域。图片来源:NASA、ESA、CSA 和 STScI。3.一架 UAS 飞入 Pebble Hill 地点 Block B/Unit C2 的烟雾柱中,Tall Timbers 研究站。图片来源:USGS/Todd Hoefen。4.2022 年 1 月 31 日,猎鹰 9 号火箭从佛罗里达州卡纳维拉尔角太空军基地发射。 图片来源:Joshua Conti,太空部队。5.GOES-17 卫星捕捉到了这张由 Hunga Tonga-Hunga Ha'apai 火山于 2022 年 1 月 15 日水下喷发产生的巨大云层图像。 图片来源:NASA 地球观测站,Joshua Stevens 使用 NOAA 和 NESDIS 提供的 GOES 图像拍摄。6.这张照片由火星 2020 号航天器下降级上的摄像机拍摄,显示了美国宇航局的毅力号火星车于 2021 年 2 月 18 日着陆火星之前的样子。图片来源:NASA/JPL-Caltech。
该卫星于美国东部时间晚上 7:30 从佛罗里达州卡纳维拉尔角太空军站搭乘 SpaceX 猎鹰 9 号火箭发射升空。此次发射是土耳其减少对外国卫星技术依赖计划的一部分,土耳其交通和基础设施部长 Abdulkadir Uralo ğlu 称这颗卫星是“我们在太空独立的象征”。该卫星将成为土耳其最大的卫星和新空间技术私人计划 Plan-S 的一部分,该计划旨在为不断增长的卫星星座提供物联网连接。Plan-S 打算在不久的将来将星座扩大到包括 100 多颗卫星,从而能够在全球范围内提供低延迟通信服务。Plan-S 联合创始人兼首席执行官 Tugay Guzel 认为,通过推广本土技术,该星座项目将加强土耳其在最后边疆的地位。 Guzel 表示:“该卫星星座将同时连接数百万台设备,极大地惠及全球许多行业,尤其是农业、物流和能源行业,而且只有少数几家公司能够提供这样的服务。”Turksat 6A 是历时十年建设的成果,将为欧洲、中东和亚洲部分地区提供卫星、电视和通信服务,并将印度、泰国、马来西亚和印度尼西亚四个国家纳入 Turksat 的覆盖范围。土耳其总统雷杰普·塔伊普·埃尔多安认为,该项目代表着土耳其航天计划的光明未来:“随着 Turksat 6A 的投入使用,土耳其将成为一个能够生产通信卫星的国家。凭借所获得的技术和经验,我们国家将在设计和制造方面占有一席之地。”
作者谨向 Space Florida 和 NewSpace New Mexico 表示深切的谢意和赞赏,感谢他们在佛罗里达州卡纳维拉尔角和新墨西哥州阿尔伯克基举办了 2022 年太空工业基地状况研讨会;并感谢所有与会者,无论是现场还是虚拟的,他们花时间和资源与六个工作组中的每一个分享他们的观察和见解。如果没有工作组主席和联合主席的辛勤努力,研讨会和本报告就不可能实现:Russ Teehan、Chris Paul、Rogan Shimmin、Karl Stolleis、Samantha Glassner、Pav Singh、Katherine Koleski、Barry Kirkendall、James Winter、Ryan Weed、Dave Barnaby、GP Sandhoo、Scott Erwin、Casey DeRaad、Dale Ketcham 和 Helen Park。其中也离不开我们的客座演讲者和小组成员的杰出贡献:Bill Nelson、Bhavya Lal、Mike Brown、Bruce Cahan、Namrata Goswami、Robbie Schingler、Brian Weeden、Mark Jelonek、Rick Tumlinson、Chris Paul、Steve Nixon、Jason Aspiotis、Juli Lawless、John Wagner、Steve Wood、Peter Wegner、Amy Hopkins、Brian Flewelling、John Moberly、Shiloh Dockstader、Lee Steinke、Christos Chrisodoulou、Tom Caudill、Maria Tanner、Megan Crawford、Jared Rieckewald、Cameo Lance、Jim Keravala、Brian Weeden、Mark Jelonek、Lisa Rich、Meagan Crawford 和 Nicholas Eftimiades。如果没有 Scott Maethner、Arial DeHerrera、Erika Hecht、Andy Germain、Jamie Holm、Emily Maethner 和 Andrew MacKenz 的大力支持,虚拟研讨会就不可能实现