危险和风险分析 (H&RA) 团队识别出可能造成灾难性后果的危险事件。其中一种事件可能是容器液位下降,导致高压气体流向未达到该压力的下游设备。可以指定安全仪表功能 (SIF) 来降低此事件的风险。SIF 检测低液位并通过关闭出口截止阀来防止漏气。指定三个冗余液位变送器来检测低液位情况。基本过程控制系统使用其他液位设备来监视和控制容器液位。当三个液位变送器中的任意两个检测到低液位(三选二,2oo3)时,安全仪表系统 (SIS) 会关闭出口截止阀。如果一个液位变送器发生危险故障,SIF 仍可工作;但是,如果两个变送器发生危险故障,SIF 将无法关闭阀门,导致容器中的液位下降,并可能造成灾难性后果。
危害和风险分析 (H&RA) 团队识别出可能造成灾难性后果的危险事件。其中一种事件可能是容器液位下降,导致高压气体流向未达到该压力的下游设备。可以指定安全仪表功能 (SIF) 来降低发生此事件的风险。SIF 检测低液位并通过关闭出口截止阀来防止漏气。指定三个冗余液位变送器来检测低液位情况。基本过程控制系统使用其他液位设备来监视和控制容器液位。当三个液位变送器中的任意两个检测到低液位(三选二,2oo3)时,安全仪表系统 (SIS) 会关闭出口截止阀。如果一个液位变送器发生危险故障,SIF 仍可工作;但是,如果两个变送器发生危险故障,SIF 将无法关闭阀门,导致容器中的液位下降,并可能造成灾难性后果。
此外,工厂工程师还负责确保故障产品在任何情况下都不会导致人身伤害甚至死亡,也不会导致财产损失或毁坏。应始终遵守相关安全规定。必须通过额外措施识别危险故障并防止任何后果。例如,对安全很重要的输出应返回到输入并通过软件进行监控。应一致使用 PCD 的诊断元素,例如看门狗、异常组织块 (XOB) 和测试或诊断指令。
工业功能安全性依赖于响应其输入正确起作用的系统。该系统应能够检测出潜在的危险故障并部署安全机制,以防止或最大程度地减少危险事件的影响。从历史上看,工业应用支持简单的硬件和软件组合,以确保在功能上安全的执行和设备保护。相比之下,当今的工业产品和系统具有越来越复杂的微电子,包括高型微控制器(MCUS),微处理器(MPU),现场编程的栅极阵列(FPGA)和应用特异性集成电路(ASICS)。因此,该软件现在包括复杂的控制算法,状态计算机和用户界面功能。硬件和软件集成的额外复杂性是设计师评估,实施和验证/验证的挑战。
可靠性和安全性分类法已更新,以反映所有使用的属性,并细化属性之间的正交关系。功能安全是可靠性的一部分,它处理安全功能和相关的危险故障。从这个角度来看,所有可靠性理论方法、模型和指标都可以应用于功能安全领域,而无需进行任何实质性更改。考虑了现代安全关键计算机控制系统的三种主要架构类型(嵌入式系统、工业控制系统和物联网)。给出了可靠性和安全性指标在核电站工业控制系统中的应用。物联网在过去几年才刚刚开始应用于安全关键系统。提出了研究物联网可靠性和功能安全性的研究和开发计划。关键词:功能安全、可靠性、安全性、可靠性理论、工业控制系统、嵌入式系统、物联网、研究与开发
ARAIM 小组的起源和目标 2004 年签署的美国-欧盟 GPS-伽利略合作协议为美国和欧盟在卫星导航领域的合作活动确立了原则。该协议预见到一个工作组来促进在下一代民用卫星导航和授时系统的设计和开发方面的合作。这项工作成为工作组 C (WG-C) 的重点。WG-C 的目标之一是开发用于生命安全服务的 GPS-伽利略综合应用程序。为此,WG-C 于 2010 年 7 月 1 日成立了 ARAIM 技术小组 (ARAIM SG)。ARAIM SG 的目标是在双边基础上研究 ARAIM(高级接收机自主完整性监测)。进一步的目标是确定 ARAIM 是否可以成为支持全球空中导航的多星座概念的基础。具体来说,ARAIM 应该支持航路和终端区飞行;它还应支持进近操作期间的横向和垂直引导。在这些目标中,全球航空垂直引导是最雄心勃勃的目标。这些飞机操作称为定位器精密垂直或 LPV。LPV-200 表示这种引导应支持低至 200 英尺高度的进近操作,ARAIM SG 专注于支持全球 LPV-200 的 ARAIM 架构。该文件是三阶段工作中的第一个里程碑报告。它提供:ARAIM 概述、第 1 阶段的成就和后续步骤。该报告由来自美国联邦航空管理局 (FAA)、斯坦福大学 (SU)、MITRE 公司、伊利诺伊理工学院 (IIT)、德国航空航天中心 (DLR)、慕尼黑联邦航空学院 (UniBW)、欧洲空间局 (ESA) 和欧盟委员会 (EC) 的 ARAIM SG 成员编写。ARAIM 概述如上所述,ARAIM 必须确保航路飞行、终端和进近操作的导航完整性。对于后者,它必须在几秒钟内检测到底层全球导航卫星系统 (GNSS) 中的所有危险故障。用空中导航的语言来说,ARAIM 必须确保在导航传感器误差大于一定量(目前 LPV-200 为 35 米)之前,在出现任何危险误导信息 (HMI) 的六秒内警告飞行员。报告第 2 节确定了其他辅助条件。ARAIM 旨在支持空中导航数十年。因此,ARAIM 必须具有灵活性,以便空中导航不会对底层全球导航卫星系统(例如 GPS、伽利略、GLONASS、北斗/指南针等)的健康状况产生脆弱的依赖。因此,ARAIM 必须允许飞行员使用新的卫星和星座。它必须自动补偿这些新卫星和星座的故障率。对于新卫星和星座,这些故障率预计会很高
执行摘要 本报告总结了石油和天然气行业安全仪表系统 (SIS) 常见故障 (CCF) 现场研究的结果。此前,核工业等其他行业也采取了类似的举措,但迄今为止,石油和天然气行业收集的有关 CCF 的现场数据非常有限。CCF 包括导致多个组件故障的事件,在有限的时间间隔内影响一个或多个 SIS。在运营审查期间使用了以下 CCF 定义:同一组件组中由于同一根本原因在指定时间内发生故障的组件/项目。本研究的目的是更深入地了解 CCF 发生的原因和频率。提高对 CCF 的了解对于运营公司以及系统设计人员和集成商来说都很重要,这样才能满足石油和天然气行业 SIS 的高可靠性要求以及挪威石油安全局规定的“足够独立”的要求。项目团队已审查了大约 12,000 份通知,涉及六个不同的安装。根据故障描述和与操作人员的讨论,每个故障都被分为独立故障和从属故障,以确定所有组件故障中由共同原因导致的故障的比例。这项研究的一个重要基础是 beta 因子模型。这是一个广泛使用的 CCF 可靠性模型,引入了希腊字母 β 作为模型参数。在这个模型中,组件 (λ) 的故障率由于共同原因被分为独立部分 (1-β)λ 和从属部分 (βλ)。贝塔系数 (β) 定义为导致共同原因故障的组件故障的比例。研究的主要成果包括: • SIS 主要设备组的通用贝塔系数值 • 用于评估可能的 CCF 原因和防御措施的 CCF 检查表。检查表可用于确定 SIS 的安装特定贝塔系数值。通用贝塔系数值 CCF 事件的数量和新建议的通用贝塔系数值总结如下,适用于 SIS 的主要设备组。“总人口”是所有六个安装中的组件标签数量,N DU 是未自动检测到的危险故障总数,但通常在功能测试或实际需求(DU 故障)期间显示,N DU , CCF 是受 CCF 事件影响的 DU 故障总数。记录的 CCF 事件在各个装置之间差异很大。在某些装置中,某些组件组未观察到 CCF 事件,而在其他装置中观察到过多的 CCF 比例。研究结果表明,运行期间经历的 CCF 比例高于可靠性计算中通常假设的比例。这是一个重要的结果,因为它表明先前对冗余 SIS 的可靠性预测可能过于乐观,并且组件之间的独立性可能低于传统假设。因此,结果应鼓励石油行业在设计和运行过程中更加努力地分析和避免 CCF。定期进行操作审查(参考第 4.1 节),特别关注系统故障和 CCF,可能是在运行期间跟踪此类故障的一种实用方法。