3 哈佛大学物理系,美国马萨诸塞州剑桥 02138 摘要 固体(能带结构)的能量与晶体动量 E(k) 图构成了导航其光学、磁性和传输特性的路线图。通过选择具有特定原子类型、组成和对称性的晶体,可以设计目标能带结构并从而设计所需特性。一个特别有吸引力的结果是设计能带,使其分裂成具有动量相关分裂的自旋分量,正如 Pekar 和 Rashba [Zh. Eksperim. i Teor. Fiz. 47 (1964)] 所设想的那样,从而实现自旋电子应用。本文提供了能带波矢相关自旋分裂 (SS) 的“设计原则”,它与传统的 Dresselhaus 和 Rashba 自旋轨道耦合 (SOC) 诱导分裂平行,但源自根本不同的来源——反铁磁性。我们使用磁对称设计原理确定了一些具有不同 SS 模式的通用 AFM 原型。这些工具还允许识别属于不同原型的具有 SS 的特定 AFM 化合物。通过密度泛函能带结构计算,使用一种特定化合物——中心对称四方 MnF 2——定量说明一种 AFM SS。与仅限于非中心对称晶体的传统 SOC 诱导效应不同,我们表明反铁磁诱导自旋分裂扩大了范围,甚至包括中心对称化合物,并且即使没有 SOC,SS 的量级也与最知名的(“巨大”)SOC 效应相当,因此不依赖于高 SOC 所需的通常不稳定的高原子序数元素。我们设想,使用当前的设计原理来识别具有自旋分裂能带的最佳反铁磁体将有利于有效的自旋电荷转换和自旋轨道扭矩应用,而无需包含重元素的化合物。 _____________________________________________________________________________ 电子邮件:erashba@physics.harvard.edu;alex.zunger@colorado.edu
磁性赛道存储器。[7,8] 自旋流可通过自旋霍尔效应 (SHE) 由电荷电流产生。人们对某些类别的高质量晶体化合物产生了浓厚的兴趣,这些化合物可产生源自此类材料本征电子能带结构的较大自旋霍尔效应:[9,10] 此类材料包括拓扑绝缘体 [11–13] 以及狄拉克和外尔半金属 [14–16]。然而,在这里,我们展示了非常大的自旋霍尔效应,它是由室温下由 5 d 元素和铝形成的高阻合金中的外部散射产生的,在实际应用中非常有用。自旋轨道相互作用 (SOI) 在自旋霍尔效应中起着核心作用,通常原子序数 Z 越大,自旋霍尔效应越大。此外,化合物或合金中组成元素的 Z 值差异越大,外部散射就越大,因此 SHE 也越大。[17,18] 在这方面,将铝等轻金属与 5 d 过渡金属合金化预计会产生较大的外部 SHE。[19] 在本文中,我们表明 M x Al 100 − x(M = Ta、W、Re、Os、Ir 和 Pt)合金不仅电阻率 ρ 发生剧烈变化,而且自旋霍尔角 (SHA) θ SH 和自旋霍尔 (SHC) σ SH 也随其成分 x 而变化。我们发现,在许多情况下,在临界成分下,会从高度无序的近非晶相转变为高度结晶相。此外,我们发现电阻率和 SHA 在外部散射最大化的非晶-结晶边界附近表现出最大值。为了支持这一猜想,我们发现最大电阻率的大小和相应的 SHA 随 Z 系统地变化。这表明 5 d 壳层的填充起着至关重要的作用,因为电阻率和 SHA 与 M 的 5 d 壳层中未配对电子的数量有关,因此当 M = Re 或 Os 时,ρ 表现出最大值(根据洪特规则,未配对 d 电子的数量分别为 5、6)。我们发现电阻率与 SHA 大致成线性比例,因此与 θ SH 成反比的功耗( / SH 2 ρ θ ≈ )在最大 SHA 时最小。[20] 因此,我们发现 M x Al 100 − x 是功率较小的优良自旋轨道扭矩 (SOT) 源