简介。数十年的研究表明,辐射能够极大地改变材料的物理化学性质。这种影响会导致材料和相关设备的退化,并限制其在特定应用中的使用 [1-7]。电子在物质中的路径上可以以多种方式相互作用 [8]。它们的大部分能量通过与电子的相互作用转移到材料中:这些碰撞是电离现象的原因。同时,电子还可以与原子核发生碰撞,导致它们从常规晶体位置移位。该过程的结果是产生空位和间隙原子。这种过程被定义为非电离能量损失,它决定了位移损伤 [6, 9]。位移损伤会导致材料性能和设备在恶劣环境中的性能下降。电子设备 [6] 和用于太空应用的太阳能电池 [5, 10] 就是这种情况。在这一领域,电子辐照是一种广泛使用的工具,用于测试太阳能电池的辐射响应,并确保在整个卫星任务期间产生足够的能量。随着时间的推移,电子辐照已转向寻找更耐辐射的材料,以及生产能够抵抗太空极端条件的太阳能电池[11]。因此,辐照越来越多地参与到研究项目中,这种趋势仍在持续和发展。在其他研究领域也可以找到类似电子辐照的例子[1]。高能电子(HEE)辐照与其他辐照技术确实不同:事实上,由于电子质量小,向较重原子核的能量转移仍然非常小。质子或其他重粒子可以诱导类似的损伤过程,但这些粒子传递的能量非常重要,因此第一次碰撞会产生一系列二次事件,导致产生复杂且广泛的缺陷[1,6,9,12]。相反,HEE 辐照主要产生孤立的点缺陷,即由空位和间隙原子组成的 Frenkel 对 [13]。然后,当
大型强子对撞机(LHC)是一种新的科学工具。工具(用于辅助观察和测量的仪器)的发明对科学的进步至关重要。尽管关于纯研究和应用研究的相对优点存在激烈的争论,但仪器对这两个分支都至关重要,是一座和谐的桥梁。在十九世纪末和二十世纪初,基础研究和应用研究的进步被用于创造更强大的工具。其中许多是为了舒适和娱乐而设计的,但它们用于增进对自然的理解引领了潮流。这真的很舒服:研究创造了新知识,这使得创造新仪器成为可能,这使得发现新知识成为可能。举个例子:伽利略在荷兰听说了他们的发明后,建造了许多望远镜。在一个令人震惊的周末,他将望远镜转向天空,发现了木星的四颗卫星!这让他确信地球确实在运动,正如哥白尼所推测的那样。望远镜的进化最终让人类能够测量出我们宇宙的浩瀚,宇宙中有数十亿个星系,每个星系都有数十亿个太阳。在更复杂的科学中,开发出了更强大的望远镜。与我们关于 LHC 的书相关的另一个例子是:电子的结构和特性是人们在了解世界如何运作的伟大探索中所能获得的最基本的东西。但其中许多特性使电子成为无数仪器中的重要组件。电子发出 X 射线用于医疗用途和确定生物分子的结构。电子束制造了示波器、电视机以及实验室、医院和家庭中数以百计的设备。一项令人印象深刻的技术使粒子加速器中的高能电子束得以控制。这些是在 20 世纪 30 年代发明的,可提供有关原子大小、形状和结构的精确数据。为了探测原子核,需要更高的能量,质子加速被添加到物理学家的工具箱中。
AGIR 电离辐射咨询小组 ALARA 尽可能低。这是一个国际公认的缩写,要求尽可能减少因接触放射性物质而对人员造成的辐射剂量,除非进一步减少剂量措施的额外成本或不切实际与采取这些措施所获得的额外剂量减少相比是不合理的。ALARA 原则也逐渐用于环境问题。阿尔法/贝塔/伽马发射源 发射阿尔法、贝塔或伽马类型电离辐射的核 AOO 预期运行发生 含水层 含水层是地下一层含水的透水岩石或松散材料(砾石、沙子、淤泥或粘土),可以使用水井从中提取地下水。ASKRO 永久实时环境和卫生控制系统的一部分。该系统的目的是向民众通报辐射安全情况。背景污染 环境中的有害物质水平,这些物质要么是自然产生的,要么来自场外来源,要么是该地区一般污染的结果。巴 压力单位。1 巴 = 100 000 帕斯卡 (Pa)。大气压约为 1 巴。BDBA 超设计基准事故 Bq、贝克勒尔 SI 活性单位,相当于每秒一次转化。C-14、碳-14 除氡外,碳-14 同位素是铀燃料循环中最重要的辐射暴露源。云照 暴露于空气羽流中放射性物质的伽马辐射 集体剂量 暴露人群人数与人均剂量的乘积;单位为曼西弗特 [manSv] 冷凝器 冷凝器将通过涡轮机的蒸汽从气态转换并回收为液态 冷却水 冷却水是冷凝器中用于将来自涡轮机的蒸汽冷却回水的海水/湖水/河水。冷却水不会与核电站的工艺用水接触或混合。D&D 净化和退役 DBA 设计基础 事故 DCD 设计控制文档 氘 氢的同位素,其原子核包含一个质子和一个中子 直接冷却系统 (DC) 冷却水取自水库(例如湖),通过热交换器,加热的水排回水库。E.ON E.ON AG;总部位于德国的能源公司 EDF Electricité de France 有效剂量包括外部剂量(云层照射和地面照射)和内部剂量(吸入和摄入)
电极| SE接口。3–5其中一些问题与SE在电极材料方面的电化学稳定性以及SE分解的相互作用的形成有关。如果可以形成稳定的固体电解质相(SEI),例如在常规锂离子细胞中石墨和优化的液体电解质之间的界面,这种初始不稳定不一定是一个问题。6 SE对碱金属的分解会导致形成其电子性能将决定其增长的相互作用的形成:7(a),如果大多数分解产物在电子上是电子上绝缘的,那么SEI的增长将最终停止,并且对电源的电源不可能(如果能够远离电源),则可能会影响电源的电源,如果它可能会影响电源,则该电源可能会造成电源的影响,如果是by的电源,则可以在电源范围内构成,而该障碍物是可以在电源上造成的,如果是by sei的范围,则可以在电源上造成,而该障碍物是可以在电源上造成的。混合离子电子传导(MIEC)之间的生长将不间断,直到消耗所有SE并发生短路。后一种相间类型对于具有持久性能的SSB不兼容。可以访问相间的化学组成对于确定产生哪种类型的相间以及是否在细胞中达到稳定性至关重要。X射线光电子光谱(XPS)是用于化学组成分析的出色表面表征技术。分析埋入界面的组成是一个挑战,因为XPS的深度分辨率有限。最近,已经开发了各种原地8-10和Operando技术11,12来解决此问题。XPS的深度分辨率有限,是由于测量的性质归因于收集光电子的收集,这些光电子在距离最初与原子核相距不远后从样品表面逸出,它们最初与它们最初界定的原子核(通常在10 nm内,在小于10 nm的范围内,用于由Alkα源激发的光电子,并经过Na的金属)。对于所有这些,其想法是使SE表面上的碱金属层足够薄,以使SE发射的光电子(可能是由于相互重点)穿过金属叠加层。为了产生碱金属层,一种技术包括将其从由相同的碱金属组成的计数器电极上镀在SE表面上,同时分析了相间产物Operando。11在这种情况下,可以从任何XPS仪器中存在的电子洪水枪向SE表面提供低能电子。尽管该技术已经证明了其表征相互作用组成的功效,但可以从中提取的信息程度(例如碱金属层的增长率行为)尚未得到充分理解。这项研究的目的是介绍可以从该操作方案中提取的信息深度。结果分为两种成对的文章(第一部分:实验;第二部分:理论13)。在第1部分中,研究了NASICON家族的SE表面上Na金属(Na 0)的电化学稳定性(Na 3.4 Zr 2 Si 2.4 P 0.6 O 12,进一步称为NZSP)。总的来说,这项工作介绍了一个了解增长的框架nzsp是因为其高离子电导率使其成为有前途的候选SE,14,但其对NA 0的稳定性仍在争论中。理论DFT计算预测Na 3 Zr 2 Si 2 PO 12(由Na 1 + X Zr 2 Si X Zr 2 Si X P 3-X O 12,0≤x≤3定义的NASICON组成空间的最接近的阶段是0 v在Na/Na +的Na/Na +应不稳定的Na/Na 2 ZROS na 2 ZRO和Na 2 ZRO 3,4 sRO 3,4 sRO 3,4 s sRO 3,4 s sRO 3)。15–17在Na 0 | Na 3 Zr 2 Si 2 PO 12也通过电化学阻抗光谱和前XPS研究在实验中提出。17,18本研究将区分两种Na 0 | NZSP接口:第一个是Na 0和抛光的NZSP(NZPS抛光)颗粒之间的接口;第二个是Na 0和As-Sinter的NZSP(NZSP AS)颗粒之间的接口。此比较旨在阐明NZSP表面化学对其对Na 0的稳定性的影响。的确,在我们小组的先前研究中确定了热处理促进在As-Sintered NZSP样品表面上形成薄的Na 3 PO 4层,当NZSP表面抛光时,该层可以去除。14 AS Na 3 PO 4是一个阶段,预测通过DFT计算对Na 0稳定,19该比较的目的是评估Na 3 PO 4作为自我形成的缓冲层的效率。对第一个实验部分的讨论着重于从XPS拟合模型中提取信息,以告知Na 0 | nzsp抛光和Na 0 | Na 0 | Na 3 PO 4 | NZSP接口的相间形成动力学。时间解析的电化学阻抗光谱(EIS)也被用来评估相互作用的离子电阻率。
简介:超高能(UHE;≳ 10 16 eV)天体物理中微子具有巨大的发现潜力。它们将探测超高能宇宙射线的加速器,超高能宇宙射线的探测能量最高可达 ∼ 10 20 eV。与在宇宙微波背景上向下散射并在磁场中偏转的宇宙射线不同,探测到的中微子将指向其来源。超高能中微子-核子相互作用探测对撞机能量尺度以上的质心能量,从而可以进行灵敏的新物理测试。为了充分利用超高能中微子的科学潜力,我们最终需要一个具有足够曝光度的天文台,即使在悲观的通量情景下也能收集高统计数据。当超高能中微子在物质中相互作用时,它们会产生相对论性粒子级联,以及由于相对论性粒子能量损失而产生的非相对论性电子和原子核尾迹。冰中的时间积分级联轮廓是一个长度约 10 米、半径约 0.1 米的椭圆体。几乎所有的主要相互作用能量都用于介质的电离。来自单个级联电子和正电子的非相干光学切伦科夫辐射可以在 TeV–PeV 探测器(如 IceCube [1])和类似实验 [2–4] 中探测到。然而,由于中微子谱急剧下降,拟议的后继者 IceCube-Gen2 [5] 的光学探测率太小,不足以成为合适的超高能天文台。已经提出并实施了几种更有效的技术来探测来自超高能中微子的级联。首先,级联中净电荷不对称产生的相干射频辐射(阿斯卡里安效应 [6])已在实验室中观测到 [7],并且是过去 [8]、现在 [9–11] 和拟议 [12, 13] 实验的焦点。由于冰中无线电的透明性 [16–20],无线电方法(详见参考文献 [14, 15])可以比光学探测器更稀疏地测量大体积 [16–20],从而使得大型探测器的建造更具成本效益。其次,τ 中微子与地球相互作用,可以产生 τ 轻子(携带大部分原始 ν τ 能量),该轻子离开地球并在空气中衰变,产生 cas-
首款通过核聚变增强的电力推进装置 纽约市,纽约州 — RocketStar Inc. 成功演示了 FireStar Drive,这是一种使用核聚变增强脉冲等离子体的突破性航天器电力推进装置。这种创新装置通过利用一种独特的无中子核聚变形式,显著提高了 RocketStar 基础水燃料脉冲等离子推力器的性能。基础推力器通过水蒸气电离产生高速质子。当这些质子与硼原子的原子核碰撞时,硼原子发生聚变,转变为高能碳,并迅速衰变成三个阿尔法粒子。通过将硼引入推力器的排气管,FireStar Drive 实现了这一聚变过程。与加力燃烧室通过将燃料引入排气管来增强喷气发动机推力的方式类似,推进器排气管中发生的聚变显著提高了其性能。发现 这一核聚变发现首次出现在 AFWERX 的 SBIR 第 1 阶段。当时,硼化水被引入脉冲等离子推进器的排气羽流中。这产生了阿尔法粒子和伽马射线,这是核聚变的明显迹象。它在随后的 SBIR 第 2 阶段得到了进一步验证。在佐治亚州亚特兰大的佐治亚理工学院高功率电力推进实验室 (HPEPL),它不仅产生了电离辐射,还将基础推进装置的推力提高了 50%。“ RocketStar 不仅逐步改进了推进系统,而且通过应用新概念在排气中产生聚变-裂变反应,实现了飞跃,”新墨西哥大学核工程教授 Adam Hecht 表示。“这是技术发展中激动人心的时刻,我期待着他们未来的创新。”“我们的团队已经探索了一段时间,我们对初步测试的结果感到非常兴奋,”RocketStar 首席执行官 Chris Craddock 表示。 “在佛罗里达的一次会议上,我在一张餐巾纸上勾勒出这个想法,并向 Miles Space 的创始人 Wes Faler 描述了它。他在开发基础推进器和聚变增强器方面非常聪明。我们收购了 Miles Space,Faler 现在是我们的首席技术官。所以现在我很高兴能够让我们已经非常出色的推进器进行聚变增强,并显著提高性能。感谢 AFWERX 和 USSF 相信这是可能的!” 下一步 RocketStar 的现有推进器现已可供客户交付。它被称为 M1.5,将作为 D-Orbit 专有的 OTV ION 卫星运载器上的托管有效载荷在太空中进行演示,该卫星运载器将执行计划于今年 7 月和 10 月进行的两次 SpaceX 运输机任务。
人们对 229 Th 核中低能级同质异能态 3 / 2 + ( E < 10 eV)产生了浓厚的兴趣,因为可以设计超精密核钟 [1, 2, 3, 4]、光学范围的核激光器 [5, 6] 和 VUV 范围的核发光二极管 [7],以及研究许多不寻常的过程:激光辐射通过电子桥处的电子壳层激发和衰变 229 m Th [8, 9, 10, 11, 12, 13, 14, 15],通过边界条件 [16] 或化学环境 [17, 18] 控制同质异能能级 γ 衰变,229 m Th 异构体的 α 衰变 [19] 及其伴随的轫致辐射 [20],精细结构常数和强相互作用参数变化的相对影响 [21, 22, 23]、长时间衰变定律的指数性检验 [24] 等。229 m Th 同质异能态的激发能量是所有已知原子核中最低的。根据最新数据 [25],它的能量 E is 为 8.19±0.12 eV。这个结果与文献 [26] 中获得的 E is = 8.28±0.17 eV 值接近,也与文献 [27] 测量的 E is = 8.10±0.17 eV 和文献 [28] 中的 E is = 7.8±0.5 eV 接近。在此之前,在 1990 年至 2007 年的相当长的一段时间内,人们认为 E is < 5 eV [29, 30]。目前,233 U 的 α 衰变实际上是获得 229 m Th 异构体的唯一方法。目前无法通过激光辐射有效激发 229 m Th,因为这需要比现在更精确地了解跃迁能量。因此,在工作 [7] 中,提出通过非弹性电子散射激发 229 m Th。事实证明,在束流能量区域 E ≈ 10 eV 内,激发截面达到 10 − 25 cm 2 的值。如此大的截面表明,使用带负电的粒子束获得 229 m Th 的方法是有前途的。作为工作 [7] 的延续,我们在此考虑低能μ子与 229 Th 核的非弹性散射过程。此类工作的先决条件可能是以下考虑。在 Born 近似中,核激发到能量为 E 的同质异能态的截面在文献 [31] 中通过分析获得,在文献 [32] 中通过分析获得。磁偶极子 ( M 1) 跃迁和电四极子 ( E 2) 跃迁的截面形式为 [31, 32]
当核子被奇异数S = -1的超子(如Λ、Σ)取代时,原子核就转变为超核,从而可以研究超子-核子(Y-N)相互作用。众所周知,二体Y-N和三体Y-N-N相互作用,特别是在高重子密度下,对于理解致密恒星的内部结构至关重要[1,2]。杰斐逊实验室[3]对Λ-p弹性散射和J-PARC[4,5]对Σ−-p弹性散射进行了精确测量,最近获得了新结果,这可能有助于限制中子星内部高密度物质的状态方程。直到最近,几乎所有的超核测量都是利用轻粒子(如e、π+、K−)诱导的反应进行的[6–8],其中从超核的光谱性质来分析饱和密度附近Y-N相互作用。利用重离子碰撞中的超核产生来研究Y-N相互作用和QCD物质的性质是过去几十年来人们感兴趣的主题[9–13]。然而,由于统计数据有限,测量主要集中在轻超核的寿命、结合能和产生产额[12,14,15]。热模型[16]和带有聚结后燃烧器的强子输运模型[17,18]计算预测在高能核碰撞中,特别是在高重子密度下,会大量产生轻超核。各向异性流动通常用于研究高能核碰撞中产生的物质的性质。由于其对早期碰撞动力学的真正敏感性 [19–22],动量空间方位分布的傅里叶展开的一阶系数 v 1 ,也称为定向流,已对从 π 介子到轻核的许多粒子进行了分析 [23– 28]。集体流是由此类碰撞中产生的压力梯度驱动的。因此,测量超核集体性使我们能够研究高重子密度下 QCD 状态方程中的 Y - N 相互作用。在本文中,我们报告了在质心能量 √ s NN = 3 GeV Au+Au 碰撞中首次观测到 3 Λ H 和 4 Λ H 的定向流 v 1。数据由 2018 年在 RHIC 上使用固定靶 (FXT) 装置的 STAR 实验收集。能量为 3.85 GeV/u 的金束轰击厚度为 1% 相互作用长度的金靶,该靶位于 STAR 的时间投影室 (TPC) 入口处 [29]。TPC 是 STAR 的主要跟踪探测器,长 4.2 m,直径 4 m,位于沿束流方向的 0.5 T 螺线管磁场内。沿束流方向每个事件的碰撞顶点位置 V z 要求在目标位置的 ± 2 cm 范围内。
1。背景步骤程序旨在成为2040年代运行时世界上第一个原型融合能厂。融合是两个轻度原子核组合并释放大量能量的过程。这种融合过程是为星星提供动力并产生比燃烧化石燃料更多的能量。我们可以使用非常强大的磁场复制此过程,但是在地球上,我们还必须将这两个颗粒加热到比太阳核心高十倍的温度。这会导致氦气的产生(惰性气体),并形成一个称为中子的非常高的能量粒子,最终可以利用该中子来产生电力。在过去的几十年中,出现了许多令人难以置信的科学工作,以克服使融合能源的重大技术挑战从牛津郡的库勒姆融合能源中心出现。但是,该程序现在正在进入一个令人兴奋的操作原型工厂的新阶段。这项技术具有为子孙后代提供安全,可持续,低碳能源的巨大潜力。融合能量产生在本质上与核电产生中使用的裂变过程非常不同,并且本质上是安全的。与裂变不同,融合过程并未直接产生任何长期寿命的放射性核废料,尽管Tokamak周围的材料可能会被放射性激活,但创新仍在开发具有耐药性的技术和材料。它将由英国原子能局(UKAEA)的全资子公司Ukifs提供。传统核裂变厂之间的风险和这种融合技术之间的风险是通过以下事实认可的:步骤的关键监管机构是环境局和健康与安全执行官,与调节裂变厂的核监管办公室相比。原型“步骤”工厂将位于诺丁汉郡的西伯顿,靠近盖恩斯伯勒附近的林肯郡边界,旨在证明从融合中产生净能量的能力。330公顷的西伯顿(West Burton)现场,目前是西伯顿(West Burton)的煤炭发电站,被选为2022年10月的Step的位置。西伯顿校园将与Ukaea技能中心和一个商业校园一起容纳步骤设施。在2024年至2032年之间,阶梯设施的设计正在通过详细的工程设计进一步开发,同时,将寻求计划构建电厂的许可。的目的是在2032年之前建立完全进化的设计和批准,以使建筑能够开始。到2040年,将使世界上第一个原型融合能源植物成为佣金,并展示融合能源商业化的途径。UKAEA的最终任务是领导可持续融合能源的交付并最大程度地发挥科学和经济利益。虽然步骤是
能量是我们每天依靠的物理科学的重要组成部分。此工作表旨在帮助五年级的学生了解它。学生将首先阅读一段内容丰富的文章,突出了能源的重要性。然后,它们将与相应的能量类型的插图匹配。工作表涵盖了能量的各个方面,包括电势,动力学,热,化学,电气,核等不同来源。根据物理学,能量是做某事的能力,并且具有许多与运动相关的形式。例如,运动中的对象具有动能,而弓形或弹簧等拉紧的设备由于其组成而包含势能。核能来自原子核内的亚原子颗粒。不能创建或破坏能量,但可以改变形式。人们使用能量进行日常活动和工作,例如将存储在煤炭和天然气中的化学能转化为电能。此工作表是向学生传授不同类型的能量及其应用的引人入胜的方式。注意:我已经删除了不必要的内容,并保持文本的原始语言完整。可再生能源是从自然来源衍生出的,这些能源以比消耗更快的速度补充的天然来源。这些来源包括阳光和风,它们不断更新自己。到处都是丰富且可访问的,可再生能源为传统化石燃料提供了许多好处。通过利用可再生能源,我们可以大大减少温室气体的排放并减轻气候危机。从化石燃料到可再生能源的过渡对于可持续的未来至关重要。可再生能源不仅提供清洁能源,还可以降低其使用相关的成本。许多人认为可再生能源是一种尖端的技术,但是利用自然能量的概念已经存在了几个世纪,在古老的习俗中很明显,例如利用风和阳光用于加热,运输和照明。世界正在逐渐向更可持续的能源转移,这是由于解决全球不确定性和改善生活质量的需求所带来的。可再生能源在为基本电器,运输,通信设备和医疗机械的动力供电中起着至关重要的作用,最终增强了人类的福祉。能量传输是通过包括工作在内的各种机制进行的,其中来自移动物体的动能被转移到固定物体中,从而导致运动或状态变化。这种现象强调了能量的动态性质及其在维持其总数的同时在对象之间转换的能力。能量转移:学生能量的教学挑战可能是教学生的复杂主题。要克服这一挑战,教师应开发引人入胜的教材,以帮助学生可视化基本能量转移。使用日常示例和简单的语言可以帮助理解。通过书籍,电影,歌曲或棋盘游戏等各种资源来鼓励问题和探索至关重要。三种形式的能源工作表可以进一步巩固理解。认识到可再生,潜在和化学能量在日常生活中的重要性,包括它们在应对气候变化中的作用,可以使学习更加相关和有意义。