目前有多种脑成像方式可用于临床诊断,包括超声、CT、单光子发射CT、PET 和 MRI。MRI 是一种非侵入性技术,不使用电离辐射,可生成高空间分辨率和对比度噪声比的图像。尽管自 1973 年发明 MRI 以来已有众多发展和发现,1 但 MRI 的主要局限性仍然存在:灵敏度低。2,3 MRI 信号源于样品的净磁化,这是由于自旋数通常为一半的原子核的塞曼能级之间的粒子数差异很小。传统 MRI 使用来自水质子 (1 H) 的 NMR 信号;人们正在开发多种造影剂来增强1 H MRI 信号并提供定位感兴趣区域的能力。 3–5 许多此类药物,如钆螯合造影剂,主要作用是降低 1 H 核的自旋晶格 (T 1 ) 和有效自旋自旋 (T 2 * ) 弛豫,从而增加 T 1 加权和 T 2 * 加权图像中的 MR 对比度。尽管 1 H 造影剂被广泛使用,但由于周围组织的背景信号的存在,这种方法受到限制,从而限制了对比度与噪声比的增加。此外,还有各种技术,如 BOLD 功能性 MRI、动脉自旋标记 (ASL) 和 MRA,这些技术需要多次图像采集和复杂的图像后处理程序才能准确解释数据。6,7
中微子真实本质的实验探索可以追溯到核物理学和粒子物理学的早期,现在正利用高精度和大规模的实验、机器和探测器。对假设的难以置信的罕见事件——原子核的无中微子双重贝塔衰变——的观察将表明中微子是其自身的反粒子,并有助于回答为什么宇宙中的物质多于反物质的基本问题。由于来自探测器的巧合但罕见的背景(即非信号)数据,当前和计划中的实验只能探索无中微子双重贝塔衰变的某些理论。要完全解决原子核是否能发生这种尚未检测到的反应,需要在探测器技术上取得新的突破,通过消除背景事件,达到难以捉摸的“正常有序”无中微子双重贝塔衰变模式。该研究项目将把核物理研发领域的最新进展统一并整合到一种新型探测器中,该探测器能够展示无背景无中微子双贝塔衰变搜索。值得注意的是,这将包括能够在单离子水平上检测氙气双贝塔衰变产生的钡++离子的传感器。此外,该探测器将综合直接紫外光收集和快速光学相机,以实现无中微子双贝塔衰变事件的高分辨率 3D 成像。实现无背景无中微子双贝塔衰变搜索将使科学办公室对无中微子双贝塔衰变的高优先级搜索达到前所未有的灵敏度水平。
目前,人们致力于实现分子的精密光谱和量子态控制。与原子相比,分子的种类要多得多,它们具有更丰富的结构,可以提供完全不同的功能,并更适合某些任务,例如,对各种基础物理测试的灵敏度更高[1-4]。高内部状态相干性和跨频率量子信息转换的潜力也使分子在量子信息处理方面具有吸引力[5-9]。尽管近年来取得了令人瞩目的进展,但分子的量子态制备、检测和控制仍然比原子更困难[10-14]。量子逻辑光谱(QLS)[15]在研究带电粒子,特别是分子离子方面显示出巨大的前景和多功能性。它依靠原子“逻辑”离子种类对联合平移运动进行协同冷却和状态读出,并能够实现难以控制的带电粒子(“光谱”离子)的量子态制备、操纵和光谱分析[16-18]。在我们的实验中,所有针对分子离子的激光器都会驱动远失谐的受激双光子拉曼跃迁,而这些跃迁不依赖于分子的特定能级结构。这一点,加上对平移自由度的协同冷却和量子逻辑读出也可以在对分子结构细节要求不高的情况下进行,使得 QLS 可用于多种离子种类。为了探索分子的新应用,以高分辨率测量跃迁频率和其他特性,并解释在这种前所未有的精度水平下变得相关的微小系统效应也至关重要。特别是,自旋和原子核的相对运动增加了
动态核极化 (DNP) 在自旋电子学和量子信息处理中被公认为具有重要意义。DNP 可产生高核自旋极化,这不仅可以通过产生 Overhauser 场 (OHF) 来延长电子自旋寿命,而且还为探索核自旋量子比特提供了灵感。在应变量子点结构 (QDS) 中,核自旋通过其四极矩耦合到应变场。研究表明,这种核四极相互作用 (NQI) 可用于实现可观的 DNP 和电子自旋极化。在这里,我们发现了一系列横向排列的 (In,Ga)As QDS 的磁光异常,这些 QDS 是由这些纳米结构中的 NQI 和 DNP 引起的。我们发现对称性降低的 QDS 中 NQI 的主轴明显偏离生长方向,导致 OHF 倾斜超过 37°。针对晶体取向探测了由此产生的 OHF 横向分量,并分析了其对 DNP 和整体自旋失相的影响。我们表明,激子的高对称电子约束势不能保证同一纳米物体内原子核的高对称 NQI,因此需要对电子约束势和核自旋池的对称性进行相关优化。我们的研究结果强调了斜 NQI 在电子自旋退相干和去极化中的作用,而这一作用迄今为止在很大程度上被忽视了。因此,这项工作揭示了设计规则,用于设计 QDS 的电子和自旋景观,从而提高 DNP 在自旋电子学和量子计算中的应用性能。
耗散在自然界中普遍存在;例如原子核的放射性衰变和吸收介质中的波传播,耗散是这些系统与不同环境自由度耦合的结果。这些耗散系统可以用有效非厄米汉密尔顿量进行现象学描述,其中引入非厄米项来解释耗散。非厄米性导致复杂的能谱,其虚部量化系统中粒子或能量的损失。非厄米汉密尔顿量的简并性称为异常点 (EP),其中特征值和相关的特征态合并 [1,2]。许多经典系统 [3-11] 已证明有效哈密顿的存在,并应用于激光模式管理 [12-14]、增强传感 [15-20] 和拓扑模式传输 [21-24]。尽管有效哈密顿方法是几十年前作为量子测量理论的一部分发展起来的,但最近对单电子自旋 [25,26]、超导量子比特 [27] 和光子 [28-30] 的实验扩大了人们对非厄米动力学中独特量子效应的兴趣。已经采用两种方法来研究量子区域内的非厄米动力学。第一种方法是通过将非厄米哈密顿量嵌入到更大的厄米系统中 [25,26,30],通过称为哈密顿膨胀的过程来模拟这些动力学。第二种方法是将非厄米动力学直接从耗散量子系统中分离出来 [27] 。为了理解这种方法,回想一下耗散量子系统通常用包含两个耗散项的林德布拉德主方程来描述:第一个项描述系统能量本征态之间的量子跳跃,第二个项产生相干非幺正演化 [31 – 33] 。通过抑制前一个项,得到的演化是
简介。数十年的研究表明,辐射能够极大地改变材料的物理化学性质。这种影响会导致材料和相关设备的退化,并限制其在特定应用中的使用 [1-7]。电子在物质中的路径上可以以多种方式相互作用 [8]。它们的大部分能量通过与电子的相互作用转移到材料中:这些碰撞是电离现象的原因。同时,电子还可以与原子核发生碰撞,导致它们从常规晶体位置移位。该过程的结果是产生空位和间隙原子。这种过程被定义为非电离能量损失,它决定了位移损伤 [6, 9]。位移损伤会导致材料性能和设备在恶劣环境中的性能下降。电子设备 [6] 和用于太空应用的太阳能电池 [5, 10] 就是这种情况。在这一领域,电子辐照是一种广泛使用的工具,用于测试太阳能电池的辐射响应,并确保在整个卫星任务期间产生足够的能量。随着时间的推移,电子辐照已转向寻找更耐辐射的材料,以及生产能够抵抗太空极端条件的太阳能电池[11]。因此,辐照越来越多地参与到研究项目中,这种趋势仍在持续和发展。在其他研究领域也可以找到类似电子辐照的例子[1]。高能电子(HEE)辐照与其他辐照技术确实不同:事实上,由于电子质量小,向较重原子核的能量转移仍然非常小。质子或其他重粒子可以诱导类似的损伤过程,但这些粒子传递的能量非常重要,因此第一次碰撞会产生一系列二次事件,导致产生复杂且广泛的缺陷[1,6,9,12]。相反,HEE 辐照主要产生孤立的点缺陷,即由空位和间隙原子组成的 Frenkel 对 [13]。然后,当
MRI 之所以能利用单个原子核的磁性,是因为图像处理现在是医学等许多生活方面的重要阶段。图像处理使用数学运算符来分析和处理数字图片。边缘检测是此过程中的关键阶段。这两组特征都将图片的数据描述为图像处理的输入。当图片出现突然的不连续性时,边缘检测就是识别和检测分隔它们的线的行为(L. Han, Y. 2020)。像素强度不连续性描述了图片中项目之间的边界。边缘检测几乎普遍使用一种运算符(二维滤波器),该运算符对图片中的大梯度敏感,同时在均匀区域返回零值。边缘检测运算符的数量惊人,每个运算符都针对检测某些类型的边缘进行了优化。边缘方向、噪声环境和边缘结构都是选择边缘检测运算符时要考虑的因素。灰度值的不连续性使边缘具有独特的外观。这意味着边缘表示一个项目结束而另一个项目开始的点。许多因素都会影响图像边缘的外观,包括:数字图像的亮度在某些点突然波动,并且对象的几何和光学特征以及边缘识别的数学算法用于识别这些点(或换句话说,具有不连续性)。近年来,研究人员对此产生了关注(R. Bausys,2020 年;M. Ravi Kumar 等人,2020 年;P. Kanchanatripop 和 D. Zhang,2020 年;SKT Hwa,2020 年;S. Bourouis、R. Alroobaea,2020 年;ZH Naji,2020 年;AK Bharodiya 和 AM Gonsai,2019 年;J. Mehena,2019 年)。
核磁共振 (NMR) 是对原子核磁特性的光谱研究。原子核的质子和中子具有与其核自旋和电荷分布相关的磁场。共振是一种能量耦合,当单个原子核被置于强外部磁场中时,它会选择性地吸收并随后释放这些原子核及其周围环境所特有的能量。自 20 世纪 40 年代以来,NMR 信号的检测和分析已作为化学和生物化学研究中的分析工具得到了广泛的研究。NMR 不是一种成像技术,而是一种提供有关放置在小体积、高场强磁性装置中的样本的光谱数据的方法。在 20 世纪 70 年代初,人们意识到磁场梯度可用于定位 NMR 信号并生成显示质子磁特性的图像,反映临床相关信息,再加上技术进步和“体型”磁体的发展。随着 20 世纪 80 年代中期临床成像应用的增多,“核”含义被抛弃,磁共振成像 (MRI) 及其大量相关缩略词开始被医学界普遍接受。随着磁场强度更高的磁铁以及解剖、生理和光谱研究的改进,MR 应用的临床意义不断扩大。对软组织差异的高对比敏感度以及使用非电离辐射对患者的固有安全性是 MRI 取代许多 CT 和投影射线照相方法的主要原因。随着图像质量、采集方法和设备设计的不断改进,MRI 通常是检查患者解剖和生理特性的首选方式。但它也存在缺点,包括设备和选址成本高、扫描采集复杂、成像时间相对较长、图像伪影明显、患者幽闭恐惧症以及 MR 安全问题。本章回顾了磁学的基本特性、共振概念、组织磁化和弛豫事件、图像对比度的生成以及获取图像数据的基本方法。第 13 章讨论了高级脉冲序列、图像特征/伪影的说明、MR 波谱、MR 安全性和生物效应。
为了精确地测试物理理论,必须在系统中进行检查,该系统足够简单,以允许精确的理论描述,并且可以高精度地测量。数十年来,氢原子一直被用作测试量子电动力学(QED)系统的系统。由于其简单性,可以使用QED精确计算氢的能级。在实验上,使用激光光谱法精确测量氢中的过渡采石场。通过将实验数据与理论表达进行比较,可以确定两个物理概念,即rydberg常数和原子核的辐射半径,并且可以测试理论本身的有效性。在这项工作中,报告了在氢样离子He +中1s-2s两光子转变的光谱法上的进展。由于他 +具有与氢相同的结构,因此基本上是由同一理论描述的。然而,QED较高的高阶贡献了更大的比例,因为它们在核心充电中具有巨大的能力。通过将1S-2S过渡频率与氦芯的众所周知的电荷半径相结合,可以在不同的系统中首次测量Rydberg常数。该值与从氢光谱获得的值的比较将对QED的普遍性进行严格的测试。这项工作的第一部分涉及离子秋天的结构。目前,氢光谱的准确性受核运动的影响限制。由于其负载,他的 +离子几乎被困在保罗陷阱中,这大大降低了这些影响。大约50个He +离子与一千个激光冷却的Be离子一起被困在一起,可用于交感冷却。在He +离子中刺激1S-2S交叉可以导致三光子电离到2+。一种技术,可以实时和一个个体的一部分来检测这些离子。这被用作光谱法的灵敏和背景检测程序。虽然可以在深层紫外线中进行成熟激光系统的氢光谱法,但有必要刺激1S-2S过渡到He +窄带辐射,波长为60,8 nm。这是在极端紫外线(XUV)中,那里没有永久线激光器。取而代之的是,红外频率梳子的高度密集脉冲在夸张谐振器中的夸张谐振器中转换为XUV。产生的XUV频率梳子的离散时尚可以有效地下雨并实现高光谱分辨率。产生高和谐的频率梳需要特殊的光谱纯度,因此可以在XUV中实现狭窄的时尚。在这项工作的第二部分中,描述了满足此要求的稳定频率梳系统的结构。作为这项工作的一部分,已证明了一项新技术来测量谐振器稳定激光系统的噪声噪声。
其中 T 是时间排序算子。虽然 U(t2,t1) 的显式计算极其困难,但显然时间相关哈密顿量引起的动力学将 t1 时的量子态双射映射到 t2 时的量子态,并保持相互的标量积。因此,如果系统最初处于高熵 S>0 的混合态,它将永远保持混合态,且熵完全相同。即使对 H(t) 在时间上的完全理想控制,也无法以这种方式产生相干性。因此,必须考虑开放系统。生成单一状态的标准方法是使感兴趣的系统与冷系统进行热接触。一般来说,这是一个极其缓慢的过程。目标量子态必须是某个给定系统的基态。另外,一般的光泵浦和特别是激光冷却 [1] 都是利用共振泵浦和自发衰变来降低微观系统熵的成熟技术。最近,工程耗散已被认为是在小型 [2-4] 和扩展系统 [5,6] 中产生目标纠缠量子态的一种手段。实验上,已经证明了两个量子比特 [7,8] 和两个捕获的中观铯云 [9] 存在纠缠。在本文中,我们表明,如果涉及中间、高度激发和衰减态,周期性驱动可以使量子系统收敛到相干量子态。关键方面是泵浦脉冲周期与内部过程的时间常数(这里是拉莫尔进动)的可比性。这将我们的提议与已建立的光泵浦协议区分开来。完全无序的初始混合物可以变得几乎相干。最终混合物的熵仅为 S ≈ kB ln2,对应于两种状态的混合。一个吸引人的优点是,一旦关闭驱动,林德布拉衰变就不再重要,系统仅受哈密顿动力学支配。本研究的重点是通过示范性方式展示在周期性激光脉冲作用下小自旋系统中熵的大幅降低。选择该系统的动机是量子点中电子自旋与核自旋相互作用的实验[10-17]。所研究的模型也适用于分子自由基中的电子自旋[18]或分子磁体,见参考文献[19-21]。在有机分子中,自旋浴由有机配体中氢原子核的核自旋决定。