恶意软件是任何可能对计算机系统造成损害的软件。恶意软件构成了对信息系统的重大威胁,这些威胁多年来遭受了几次毁灭性攻击的影响。传统的Antimalware软件由于多种恶意软件(例如多态性)的逃避技术提供了有限的效率,以防止恶意软件删除。Antimalware只能删除其签名的恶意软件,并且对零日间攻击无效和无助。几项研究工作利用受监督和无监督的学习算法成功地检测和对恶意软件进行了分类,但是在相关研究工作中占据了误报和虚假否定,以及利用不足的数据集,这些数据集未能捕获尽可能多的恶意软件家庭来概括地发现发现。这项研究利用机器学习来检测和对恶意软件进行使用机器学习技术,包括特征选择技术以及超参数优化。主成分分析用于治疗由于用于容纳大量恶意软件系列的大型数据集而导致的维度诅咒。支持向量机,K最近的邻居和决策树用于使用两个数据集进行性能比较的模型。通过使用网格搜索和K-折叠验证并调用最佳参数以实现最佳性能,以获得最佳性能,以获得最佳的检测准确性和低的检测和低底片,从而提高了模型的性能,从而增强了所选分类器的超参数以呼吁最佳性能。使用混乱矩阵,精度,召回和F1评分评估了研究模型。准确度为99%,98.64和100%,与K最近的邻居,决策树和支持向量机与CICMALMEM数据集分别具有相等数量的恶意软件和良性文件,与K最近的邻居达到了零误报,而准确性的准确性为97.7%,70%和96%的数据,而Datation却在k中相得益彰,而DATAIT则相应地数据。与K最近的邻居一起,还可以实现38的最低误报数量。该模型接受了默认超标仪的培训,以及通过调整超参数来获得的表演来获得的超级参数,并且发现优化超标仪和功能选择技术的优化能力并不一定能够与DataIns的表现更好,并且可以通过良好的数量进行良好的数量,并提供了良好的数量。未来的作品包括使用深度学习和集合学习作为分类器以及其他超参数优化技术,例如贝叶斯优化和随机搜索,其他具有较高恶意软件系列的数据集也可以用于培训。
在本文中,我们从现代 Hopfield 模型的角度研究表格学习。具体来说,我们使用广义稀疏的现代 Hopfield 模型来学习表格数据表示和预测。在这项工作中,引入了 BiSHop(双向 S 分析 Hop 场模型)作为端到端表格学习的创新框架,解决了深度表格学习中的两个挑战:非旋转不变数据结构和特征稀疏性。受到联想记忆和注意力机制之间新建立的联系的启发,BiSHop 采用了双组分策略。它通过双向学习模块按列和按行顺序处理数据,每个模块都配备广义稀疏 Hopfield 层。这些层通过引入可学习的稀疏性扩展了传统的 Hopfield 模型。从方法论上讲,BiSHop 支持多尺度表示学习,能够有效地捕捉特征内和特征间的交互,并在各种尺度上具有自适应稀疏性。在各种真实世界数据集上进行的经验验证表明,BiSHop 以更少的超参数优化 (HPO) 运行超越了当前最先进的方法的性能,标志着深度表格学习的重大进步。
最优超参数问题是机器学习 (ML) 和人工智能 (AI) 技术发展领域的关键问题,传统策略大多浪费时间且效率低下。在此背景下,生成式人工智能的出现为自动化和增强超参数优化过程提供了一个有希望的机会。本研究论文深入探讨了生成式人工智能在优化策略制定超参数中的作用,重点关注其对决策过程的潜在影响。本研究探讨了生成式人工智能技术在策略搜索空间定义领域的适用性。此外,它还深入研究了生成式人工智能是否比传统方法为策略增加了额外的优势。最后,本研究还考察了生成式人工智能提高战略模型可解释性的能力。通过结合理论分析和对众多数据集和复杂性的实证评估,这些研究将使用包括方法性能、计算性能和稳健性在内的关键指标,将生成式人工智能技术与已建立的优化技术进行对比。最终,本文旨在为生成式人工智能在优化战略决策超参数方面的变革能力的持续讨论做出贡献。
量子计算机的尺寸和质量正在提高,但噪声仍然很大。误差缓解扩展了噪声设备可以有意义地执行的量子电路的大小。然而,最先进的误差缓解方法很难实现,超导量子比特设备中有限的量子比特连接将大多数应用限制在硬件的原生拓扑中。在这里,我们展示了一种基于机器学习的误差缓解技术,该技术在非平面随机正则图上具有多达 40 个节点的量子近似优化算法 (QAOA)。我们使用具有仔细的决策变量到量子比特映射的交换网络和前馈神经网络来优化多达 40 个量子比特的深度二 QAOA。我们观察到最大图的有意义的参数优化,这需要运行具有 958 个双量子比特门的量子电路。我们的论文强调了在量子近似优化中缓解样本而不仅仅是期望值的必要性。这些结果是朝着在经典模拟无法实现的规模上执行量子近似优化迈出的一步。达到这样的系统规模是正确理解 QAOA 等启发式算法的真正潜力的关键。
准确预测锂离子电池 (LIB) 的剩余使用寿命 (RUL) 对于提高 LIB 供电应用的运行效率和安全性至关重要。它还促进了电池设计流程的改进和快速充电方法的发展,从而最大限度地缩短循环测试时间。虽然人工神经网络 (ANN) 已成为这项任务的有前途的工具,但在不同的数据集和优化策略中确定最佳架构并非易事。为了应对这一挑战,开发了一个机器学习框架来系统地评估不同的 ANN 架构。仅利用在不同充电策略下循环的 124 个锂离子电池的 30% 的训练数据集,在此框架内进行超参数优化。这确保了每个模型在其最佳配置下进行评估,从而有助于对 RUL 预测任务进行平衡比较。此外,该研究还考察了不同循环窗口对模型功效的影响。采用分层分区方法强调了在不同子集之间统一数据集表示的重要性。值得注意的是,表现最佳的模型仅使用 40 个周期的逐周期特征,就实现了 10.7% 的平均绝对百分比误差。
摘要:本文引入综合学习、多种群并行和参数自适应等思想,提出一种多策略自适应综合学习粒子群算法。该算法设计多种群并行策略,提高种群多样性,加速收敛;实现种群粒子交换与变异,保证粒子间信息共享;将全局最优值加入速度更新,设计新的速度更新策略,提高局部搜索能力;采用综合学习策略构造学习样本,有效促进信息交换,避免陷入局部极值;通过线性改变学习因子,设计新的因子调整策略,增强全局搜索能力;设计一种基于S型递减函数的自适应惯性权重调整策略,均衡搜索能力。最后,选取一些基准函数和光伏参数优化,该算法在10个函数中的6个上取得最优性能。结果表明,所提算法与粒子群优化的一些变体和其他算法相比,多样性、求解精度和搜索能力都有了很大的提高,为光伏发电这一复杂的工程问题提供了更有效的参数组合,从而提高了能量转换效率。
摘要机器学习到财务领域的应用已成为主题讨论的主题。,预计深度学习将显着推进对冲和校准的技术。由于这两种技术在金融工程和数学金融中起着核心作用,因此对他们的应用吸引了从业人员和研究人员的关注。深度套期保值,将深度学习应用于对冲,预计将有可能分析交易成本等因素如何影响对冲策略。由于由于计算成本而难以对这些因素的影响进行数量评估,因此深度对冲不仅为衍生品的精炼和自动化对冲操作提供了可能性,而且为风险管理中的更广泛应用提供了可能性。深度校准将深入学习用于校准,有望进行参数优化计算,这是衍生品定价和风险管理中必不可少的过程,更快,更稳定。本文概述了现有文献,并从实际和学术角度提出了未来的研究方向。具体来说,本文展示了深度学习对现有理论框架和财务上的实际动机的影响,并确定了深度学习可以带来的潜在发展以及实践挑战。关键字:金融工程;数学金融;衍生物;对冲校准;数值优化
从发现命中化合物到先导化合物优化,使用 AI 结合配体和基于结构的技术。在最近发表的预印本中,我们描述了 Iktos 和 Servier 在后期先导化合物优化项目中成功合作的结果 [7]。这次,我们首次描述了深度学习在从头设计中成功应用于解决实际药物发现项目中的多参数优化 (MPO) 问题。使用项目的初始数据集,在 11 个生物测定中测量了 881 个分子,我们构建了 11 个 QSAR 模型,并将它们与基于深度学习的 AI 从头设计算法结合使用。我们能够自动生成 150 种预测为在所有 11 个目标上都有效的虚拟化合物。选出 20 个最有前途的分子,合成并测试了 11 个。有趣的是,合成并测试的 11 种 AI 设计化合物显示出的功能组要么在初始数据集中很少见,要么在项目早期从未尝试过。最终,11 种 AI 设计的分子中有一种同时满足了项目的所有目标,这表明该方法可以提出创新的新分子来解决 MPO
本文提出了一个深度学习模型,挑战了公司破产这一金融领域的已知知识。具体来说,我们构建了一个用于预测公司破产的多层感知器 (MLP) 模型,并对其进行了分析,以直观地显示哪些输入参数对模型的准确性最重要。该模型使用大约 55,000 行数据、数据清理和超参数优化,在 120 个时期和 30 次试验后实现了 82.8% 的平均准确率和 0.0678% 的标准差,这是一个出色的结果。该模型优于两个进行比较的支持向量机 (SVM) 模型,并表现出良好的泛化能力。然而,非线性 SVM 模型产生了 20.48% 的假阳性,准确率为 71.96%,而 MLP 模型产生了 25.1% 的假阳性。因此,如果减少假阳性的数量更重要,那么尽管准确率较低,但 SVM 模型可能是更可取的。分析输入参数后发现,员工人数、离职组和股权比例是对破产预测影响最大的输入参数。由此得出结论,这些参数可能是分析一家公司是否会破产时最重要的因素。
当其在临近空间飞行并获得一定高度和速度时,凭借高升阻比的结构优势,仍可实现大范围的水平和垂直机动。它不仅克服了传统抛物线弹道机动性差的缺点,而且与常规高超声速巡航导弹相比,还具有射程远、机动性强的优势。随着临近空间高超声速滑翔飞行器能够丰富空间作战的内涵和理念、对传统作战模式提出挑战和冲击、具有广阔的军事应用前景等共识,各国都高度重视临近空间高超声速滑翔飞行器的弹道特性研究。参考文献[4]用数值方法研究了初始高度、角度和速度对弹道平衡滑翔状态的影响,并分析了跳跃形成的原因。文献[5]改进了平衡滑翔和跳跃滑翔两种典型弹道的弹道特性研究方法。文献[6]对跳跃式高超声速飞行器的弹道特性及参数优化问题进行了探讨。本文通过建模与仿真的方法,对某高超声速滑翔飞行器滑翔再入弹道特性进行了分析,并从射程、速度、高度、过载等方面探讨了飞行器动能武器系统防御该类飞行器的难点。为临近空间防御能力建设提供了方向。