开放和远程学习ODL是作为满足全球社会教育需求的一种手段(Jimoh,2013)。这种通过教育接触每个人的追求导致了许多不同的方法仍然归类为远程学习(联合国教科文组织,2002年)。远程学习被认为是一种主要的方法,可以促进并增强对教师和其他工人之间的进一步教育的渴望。结果,由于其灵活性和吸引尼日利亚各种各样的学习者的能力,开放和远程学习(ODL)已获得了知名度。实际上,尼日利亚的开放和远程学习早于尼日利亚的独立性,因为1950年代至60年代的许多尼日利亚人通过通讯研究进行了基础教育(EKE,2019年)。尼日利亚人寻求进入英国大学和机构的通讯学院,其他一些人获得了录取,并注册为伦敦大学和剑桥大学普通和高级水平的一般教育证书(GCE)的外部候选人。这些计划在一次热蛋糕中,尼日利亚人称之为最佳的脑部craig,并成为改善尼日利亚和大多数非洲国家的教育进步的工具。
摘要:全球变暖威胁不断升级,迫使人们转向清洁能源生产,而可再生能源正成为可持续发电的有希望的解决方案。然而,可再生能源固有的间歇性要求混合系统保持可靠的电力。本综述探讨了双模式可再生混合动力系统的优化,该系统在并网和自主模式下运行,以应对电力稳定性挑战。通过分析最先进的方法,包括控制算法、架构规模和能源管理策略方面的进步,这项工作确定了提高系统效率和成本效益的方法。主要发现表明,优化的双模式系统可提高功率一致性和运行弹性。本综述最后概述了未来研究的路线图,强调了集成技术、环境评估和监管合作方面的创新是最大限度地发挥双模式系统在实现全球能源可持续性目标方面影响的关键步骤。
研究微生物组的常见程序是将测序的28个重叠群固定到元基因组组装的基因组中。当前,使用共同含量和基于序列的30个基序(例如四核苷酸频率)是Metagenome 31 binning的最先进的基于共同学习和序列的基于深度学习的方法。从基于对齐的分类得出的分类标签尚未被广泛使用。在这里,我们提出了一种基于半监督的双模式变异自动编码器的元基因组包装工具33,结合了Tetranu-34克利托德频率,与CONTIG共浸没量与CONTIG注释与任何分类分类级的35个分类级返回了35个。taxvamb在CAMI2 Human Microbiome数据集上的所有其他36个BINNER都优于所有其他36个Binner,平均返回40%37个接近完整的组件比下一个最佳BINNER。在实际的长阅读38个数据集上,税收vamb平均恢复了13%的接近完整垃圾箱和14%的39种。在单样本设置中使用时,平均退税量比VAMB高40 83%。taxvamb垃圾箱不完整的基因组比任何其他工具都要好41个,返回255%的高质量垃圾箱42不完整的基因组比下一个最好的binner。我们的方法具有43个研究和工业应用以及方法论新颖性,可以将44个可以通过半监视的多模式45个数据集转化为其他生物学问题。46
我的主要研究兴趣是了解人类神经认知发展如何受到社会和语言经验的影响。聋哑父母的听力正常儿童(也称为 CODA)是一个有趣的群体,因为他们具有独特的交流经验,因此可以研究依赖经验的可塑性。事实上,他们可能同时接触手语(例如美国手语)和口语(例如英语),从而导致出现一种特殊的多语言现象:双模态双语现象。尽管传统上关于这一群体的数据有限且往往不一致,但人们通常认为他们有语言学习困难的风险。本演讲将讨论最近的数据,比较从婴儿期到学龄期的双模态双语者的大脑激活模式和语言习得概况,并与从出生开始学习两种口语的儿童(单模态双语者)和学习单一语言的儿童(单语者)进行比较。结果表明,语言经验会影响生命最初几个月的大脑语言网络的发展。他们还指出,双模态双语者从婴儿期到学龄期都能成功习得语言,与听力正常的父母的孩子相比,他们在某些方面具有优势。以双模态双语为例,本演讲将说明语言专长的形成是一个依赖于儿童环境和经验的适应性过程。
摘要:在材料的同一区域中创建双模式模式是提高信息存储维度,提高加密安全性水平并促进编码技术开发的高级方法。但是,原地,不同的模式可能会导致在制造和使用过程中严重的相互干扰。新材料和图案技术对于进步非介入双模式模式至关重要。在本文中,通过结合结构色和色极化来证明非递交双模式模式,该结构颜色和色极化是由含有偶氮苯的线性液体晶体共聚物设计的,具有光荧光效果。一方面,结构颜色模式是通过硅模板印刷的,并在紫外线诱导的聚合物表面从玻璃状到橡胶状态的局部局部过渡之后,并带有周期性微观结构。另一方面,基于局部光诱导的介体取向的不同极化模式是通过魏格特效应在光荧光区域内产生的。,次级印迹用于消除撰写极化模式期间结构颜色模式的部分损害,从而获得双模式图案而不会干扰。这项研究为创建具有潜在跨行业应用的先进材料和复杂的光图案技术提供了蓝图。■简介
FG ρ 1 FG ρ 2 = F c,e ρ 1 F c,e ρ 2 + ωF c,e ρ 1 F c,c ρ 2 + ¯ ωF c,e ρ 1 F c,c 2 ρ 2 + F c,e ρ 1 F c 2 ,e ρ 2 + ¯ ωF c,e ρ 1 F c 2 ,c ρ 2 + ωF c,e ρ 1 F c 2 ,c 2 ρ 2 + ωF c,c ρ 1 F c,e ρ 2 + ¯ ωF c,c ρ 1 F c,c ρ 2 + F c,c ρ 1 F c,c 2 ρ 2 + ωF c,c ρ 1 F c 2 ,e ρ 2 + F c,c ρ 1 F c 2 ,c ρ 2 + ¯ ωF c,c ρ 1 F c 2 ,c 2 ρ 2 + ¯ ωF c,c 2 ρ 1 F c,e ρ 2 + F c,c 2 ρ 1 F c,c ρ 2 + ωF c,c 2 ρ 1 F c,c 2 ρ 2 + ¯ ωF c,c 2 ρ 1 F c 2 ,e ρ 2 + ωF c,c 2 ρ 1 F c 2 ,c ρ 2 + F c,c 2 ρ 1 F c 2 ,c ρ 2 + F c,c 2 ρ 1 F c 2 ,c 2 ρ 2 + F c 2 ,e ρ 1 F c,e ρ 2 + ωF c 2 ,e ρ 1 F c,c ρ 2 + ¯ ωF c 2 ,e ρ 1 F c,c 2 ρ 2 + F c 2 ,e ρ 1 F c 2 ,e ρ 2 + ¯ ωF c 2 ,e ρ 1 F c 2 ,c ρ 2 + ωF c 2 ,e ρ 1 F c 2 ,c ρ 2 + ¯ ωF c 2 ,c ρ 1 F c,e ρ 2 + F c 2 ,c ρ 1 F c,c ρ 2 + ωF c 2 ,c ρ 1 F c 2 ,e ρ 2 + ωF c 2 ,c ρ 1 F c 2 ,c ρ 2 + F c 2 ,c ρ 1 F c 2 ,c 2 ρ 2 + ωF c 2 ,c 2 ρ 1 F c,e ρ 2 + ¯ ωF c 2 ,c 2 ρ 1 F c,c ρ 2 + F c 2 ,c 2 ρ 1 F c,c 2 ρ 2 + ωF c 2 ,c 2 ρ 1 F c 2 ,e ρ 2 + F c 2 ,c 2 ρ 1 F c 2 ,c ρ 2 + ¯ ωF c 2 ,c 2 ρ 1 F c 2 ,c 2 ρ 2。
信息的爆炸性增长及其广泛的可用性强调了对强大的加密和反对措施的需求。在这项研究中,CD量子点进行了设计(QD),以通过战略配体设计对单个触发器表现出多种视觉响应。表面工程方法允许QD在光激发引起的电子从CD(II)转移到CD(0)时从黄色变为黑色。表面配体在孔注入下解吸,导致QDS大小增加,并导致光致发光的红移。这种光激发引起的氧化还原反应揭示了前所未有的光致变色和光致发光现象,为先进的信息保护措施建立了基础。利用这些QD,在固态底物中实现了紫外线照射下的出色写作性能,而双模式加密系统则在凝胶矩阵中实现,为信息加密以及累积和交互式信息保护开放了新的途径。此外,CDS QD的氧化还原反应被用作3D打印的墨水,从而通过控制墨水中的氧气含量来调节光致变色的速率,从而创建具有数字可编程的材料。这一进步还阐明了3D打印技术的进度。
• 美国宇航局的《战略计划》(2022 年)概述了具体的技术开发活动,这些活动指导该机构“创新和推进变革性空间技术” • 对于空间运输领域,一个典型的高影响空间技术领域是使用低毒或“绿色”火箭推进剂,与传统的自燃推进剂相比,这些推进剂表现出良好的空间储存性、Isp 性能和地面处理能力 • 先进航天器高能无毒 (ASCENT 推进剂)(以前称为 AF-315E)的 Isp 密度比肼高 50%,并已在包括绿色推进灌注任务 (GPIM, 2019) 和月球手电筒 (2022) 在内的任务中得到验证 • 绿色推进双模式 (GPDM) 项目旨在利用 ASCENT 的离子液体特性,将其用作化学和电喷雾推进的双模式推进剂,在 6U 立方体卫星上使用通用推进剂罐/进料系统计划于 2025 年底发射的飞行演示 • GPDM 是一项由 MSFC 牵头、SST/STMD 资助的活动,NASA、大学和行业合作伙伴(由拨款和 SBIR/STTR 计划资助)共同开发飞行部件,并将支持特定的任务操作活动
本研究主要集中于使用量子理论对低温 InP HEMT 高频电路进行分析,以发现晶体管非线性如何影响所产生模式的量子关联。首先,推导出电路的总哈密顿量,并使用海森堡-朗之万方程检查所贡献运动的动力学方程。利用非线性哈密顿量,将一些组件附加到 InP HEMT 的本征内部电路,以充分解决电路特性。附加的组件是由于非线性效应而产生的。结果,理论计算表明,电路中产生的状态是混合的,没有产生纯态。因此,修改后的电路产生双模压缩热态,这意味着可以专注于计算高斯量子不和谐来评估量子关联。还发现非线性因素(称为电路中的非线性分量)可以强烈影响改变量子不和谐的压缩热态。最后,作为主要观点,得出结论,虽然可以通过设计非线性分量来增强模式之间的量子关联;然而,由于 InP HEMT 的运行温度为 4.2 K,因此实现大于 1 的量子不和谐、纠缠微波光子似乎是一项具有挑战性的任务。
核热推进 (NTP) 目前被确定为整个太阳系人类任务的首选推进技术之一。最先进的 NTP 循环基于固体核发动机火箭飞行器应用 (NERVA) 级技术,该技术预计将提供 900 秒的比冲 (I 𝑠𝑝 ),是化学火箭性能 (450 秒) 的两倍。即使有如此令人印象深刻的提升,NTP I 𝑠𝑝 仍然无法为高 Δ V 任务提供足够的初始到最终质量分数。核电推进 (NEP) 可以提供极高的 I 𝑠𝑝 (>10,000 秒),但推力较低,并且推进系统质量功率比受到限制。对电源的需求还增加了太空散热问题,在理想条件下,热能转化为电能的比例最多为 30-40%。提出了一种新型波转子 (WR) 顶置循环,有望提供接近 NERVA 级 NTP 推进的推力,但 I 𝑠𝑝 在 1200-2000 秒范围内。与混合 NEP 模式相结合,占空比 I 𝑠𝑝 可以进一步增加(1800-4000 秒),同时将额外干质量降至最低。双模设计使快速运输级载人火星任务成为可能,并有可能彻底改变我们太阳系的深空探索。