我的主要研究兴趣是了解人类神经认知发展如何受到社会和语言经验的影响。聋哑父母的听力正常儿童(也称为 CODA)是一个有趣的群体,因为他们具有独特的交流经验,因此可以研究依赖经验的可塑性。事实上,他们可能同时接触手语(例如美国手语)和口语(例如英语),从而导致出现一种特殊的多语言现象:双模态双语现象。尽管传统上关于这一群体的数据有限且往往不一致,但人们通常认为他们有语言学习困难的风险。本演讲将讨论最近的数据,比较从婴儿期到学龄期的双模态双语者的大脑激活模式和语言习得概况,并与从出生开始学习两种口语的儿童(单模态双语者)和学习单一语言的儿童(单语者)进行比较。结果表明,语言经验会影响生命最初几个月的大脑语言网络的发展。他们还指出,双模态双语者从婴儿期到学龄期都能成功习得语言,与听力正常的父母的孩子相比,他们在某些方面具有优势。以双模态双语为例,本演讲将说明语言专长的形成是一个依赖于儿童环境和经验的适应性过程。
关键词:雷达 海岸 光学接收系统 双频 三通道 摘要:海岸带多潮间带、岛礁,传统的船载声学测量方法效率极其低下,因此海岸带三维综合测量一直是遥感领域的一个难点。由于海水蓝绿光窗透明度好,激光点云数据能快速准确区分浅海水体地形特点。目前国际上对海岸带最有效的探测方式是机载双频激光雷达探测技术,该技术测量速率高,覆盖范围广。激光器同时输出1064nm和532nm双波长激光,1064nm激光形成海面回波,532nm激光穿透海水形成浅海和深海回波。但在海水传播过程中,随着水深的增加,光子散射数增多,会造成回波信号的衰减。因此对大动态范围内的弱光探测精度不高,一直是近岸航空测深的难点。针对这一问题,设计了分场三通道光学接收系统。ZEMAX仿真结果表明,双通道激光雷达三通道接收光学系统有效降低了光学元件与通道间的光串扰,实现了不同水深通道的能量收集。该结构对光电信号进行了动态压缩,提高了信噪比。
本研究主要集中于使用量子理论对低温 InP HEMT 高频电路进行分析,以发现晶体管非线性如何影响所产生模式的量子关联。首先,推导出电路的总哈密顿量,并使用海森堡-朗之万方程检查所贡献运动的动力学方程。利用非线性哈密顿量,将一些组件附加到 InP HEMT 的本征内部电路,以充分解决电路特性。附加的组件是由于非线性效应而产生的。结果,理论计算表明,电路中产生的状态是混合的,没有产生纯态。因此,修改后的电路产生双模压缩热态,这意味着可以专注于计算高斯量子不和谐来评估量子关联。还发现非线性因素(称为电路中的非线性分量)可以强烈影响改变量子不和谐的压缩热态。最后,作为主要观点,得出结论,虽然可以通过设计非线性分量来增强模式之间的量子关联;然而,由于 InP HEMT 的运行温度为 4.2 K,因此实现大于 1 的量子不和谐、纠缠微波光子似乎是一项具有挑战性的任务。
• 美国宇航局的《战略计划》(2022 年)概述了具体的技术开发活动,这些活动指导该机构“创新和推进变革性空间技术” • 对于空间运输领域,一个典型的高影响空间技术领域是使用低毒或“绿色”火箭推进剂,与传统的自燃推进剂相比,这些推进剂表现出良好的空间储存性、Isp 性能和地面处理能力 • 先进航天器高能无毒 (ASCENT 推进剂)(以前称为 AF-315E)的 Isp 密度比肼高 50%,并已在包括绿色推进灌注任务 (GPIM, 2019) 和月球手电筒 (2022) 在内的任务中得到验证 • 绿色推进双模式 (GPDM) 项目旨在利用 ASCENT 的离子液体特性,将其用作化学和电喷雾推进的双模式推进剂,在 6U 立方体卫星上使用通用推进剂罐/进料系统计划于 2025 年底发射的飞行演示 • GPDM 是一项由 MSFC 牵头、SST/STMD 资助的活动,NASA、大学和行业合作伙伴(由拨款和 SBIR/STTR 计划资助)共同开发飞行部件,并将支持特定的任务操作活动
核热推进 (NTP) 目前被确定为整个太阳系人类任务的首选推进技术之一。最先进的 NTP 循环基于固体核发动机火箭飞行器应用 (NERVA) 级技术,该技术预计将提供 900 秒的比冲 (I 𝑠𝑝 ),是化学火箭性能 (450 秒) 的两倍。即使有如此令人印象深刻的提升,NTP I 𝑠𝑝 仍然无法为高 Δ V 任务提供足够的初始到最终质量分数。核电推进 (NEP) 可以提供极高的 I 𝑠𝑝 (>10,000 秒),但推力较低,并且推进系统质量功率比受到限制。对电源的需求还增加了太空散热问题,在理想条件下,热能转化为电能的比例最多为 30-40%。提出了一种新型波转子 (WR) 顶置循环,有望提供接近 NERVA 级 NTP 推进的推力,但 I 𝑠𝑝 在 1200-2000 秒范围内。与混合 NEP 模式相结合,占空比 I 𝑠𝑝 可以进一步增加(1800-4000 秒),同时将额外干质量降至最低。双模设计使快速运输级载人火星任务成为可能,并有可能彻底改变我们太阳系的深空探索。
© 作者 2023。开放存取。本文根据知识共享署名 4.0 国际许可协议获得许可,允许以任何媒介或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信用,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
我们研究了当使用双模压缩真空态作为探针时,在损耗传感中的量子优势。在 PRX 4, 011049 中进行实验演示后,我们考虑了一种量子方案,其中信号模式通过目标,并在测量之前将热噪声引入闲置模式。我们考虑了两种具有实际意义的检测策略:巧合计数和强度差异测量,它们广泛用于量子传感和成像实验。通过计算信噪比,我们验证了即使在强热背景噪声下量子优势仍然存在,而经典方案使用直接受到热噪声影响的单模相干态。这种稳健性来自这样一个事实:在经典方案中信号模式受到热噪声的影响,而在量子方案中闲置模式受到热噪声的影响。为了进行更公平的比较,我们进一步研究了一种不同的设置,其中在量子方案中将热噪声引入信号模式。在这种新设置中,我们表明量子优势显著降低。然而,值得注意的是,在与量子 Fisher 信息相关的最佳测量方案下,我们表明双模压缩真空态确实在整个环境噪声和损耗范围内表现出量子优势。我们希望这项工作能为实验证明损耗参数传感中的量子优势提供指导,这种传感受有损和有噪声的环境影响。
自量子光学诞生之初,人们就知道光学状态的非经典特性(如压缩、反聚束和纠缠)易受衰减影响 [1]。通过衰减器(有损通道)传播时,光学状态的量子特征与环境共享,并在追踪环境时丢失。因此,人们长期以来一直努力减少制备和操纵这些状态时的损失,以增强其在量子信息处理 [2]、量子计量 [3] 和其他应用中的实用性。在本文中,我们挑战了这一范式,展示了一类非经典纠缠光态,它们不仅可以在衰减介质中传播而不受损失的影响,而且是由于这些损失而产生的。也就是说,任何其他状态进入并传播通过该介质后,都会转换为该家族中的状态。我们将这些状态称为光学暗态( OD ),类似于原子的暗态,原子的暗态虽然与原子跃迁共振,但不吸收光。与原子暗态类似, OD 态出现在 Λ 形原子系统中。两个基态通过两对场以类似拉曼的方式相互耦合。在每对场中,一个场是量子,另一个场是强激光(图 1 ( a ))。通过这种方式,量子场直接与原子基态相互作用:模式 ˆ a 下光子的吸收会将光子从能级 ∣ ñ 1 转移到能级 ∣ ñ 2 ,而模式 ˆ b 具有相反的效果。当两种模式都充满光子时,这些过程会叠加发生。此外,如果这些模式的状态是具有特定压缩参数(由光学模式和物质之间的有效耦合常数之比决定)的双模压缩真空(TMSV),则这两个过程会发生干涉相消,从而有效地阻止原子态和光学态的相互作用。然后,即使基态相干性衰减,该 OD 态也会在这种原子的气体中传播而不会发生任何损失或演变。这里研究的现象的物理与 [ 4 , 5 ] 的物理密切相关,其中两个宏观原子集合的纠缠是由耗散现象驱动的。事实上,正如我们在下面展示的,它们是产生光和原子纠缠态的相同的过程。
基于皮层脑电图 (ECoG) 的双向脑机接口 (BD-BCI) 引起了越来越多的关注,因为:(1) 需要同时进行刺激和记录以恢复人类的感觉运动功能 [1] 和 (2) 良好的空间分辨率和信号保真度以及临床实用性。在刺激方面,这种 BD-BCI 可能需要 >10mA 的双相电流来引发人工感觉,以及 >20V 的电压顺应性以适应各种生物阻抗 [1]。两个刺激相之间的电荷不匹配会导致电压积累,从而造成电极腐蚀和组织损伤。现有的电荷平衡 (CB) 技术,例如电荷包注入 (CPI) [2] 和基于时间的电荷平衡 (TCB) [1],会在脉冲间隔内产生 CB 电流,导致不必要的二次感觉和过度的刺激伪影 (SA)。对于记录,低输入参考噪声 (IRN) 是获取小神经信号 (NS) 所必需的,而大动态范围 (DR) 则是容纳大 SA 所必需的。现有的记录系统采用 SAR [1] 或连续时间 delta-sigma (CT-ΔΣ) [3] ADC(图 4)。前者由于 DAC 不匹配而具有有限的 DR,而后者则受到环路延迟内大幅度尖锐 SA 引起的失真的影响。尽管在 [4] 中,ΔΣ-ADC 的采样频率会自适应地变化以适应 SA,但所需的稳定时间很长。为了解决上述问题,本文提出了一种基于 ECoG 的 BD-BCI,其中包括:(1) 具有双模基于时间的电荷平衡 (DTCB) 的高压 (HV) 刺激系统和 (2) 高动态范围 (HDR) 时域流水线神经采集 (TPNA) 系统。图 1 描绘了所提出的 BD-BCI。刺激系统包括 4 个刺激器,每个刺激器包括一个 8 位分段电流控制 DAC 和一个 HV 输出驱动器,用于生成刺激脉冲。为了执行 CB,每个刺激器都采用具有 2 种模式的 DTCB 环路,即无伪影 (AL) TCB 和脉冲间有界 (IB) TCB 模式。3 阶 II 型 PLL 为基于时间的量化创建所需的时钟。记录系统有 4 个通道,每个通道都采用低增益模拟前端 (LG-AFE)、HDR 电压时间转换器 (VTC)、两步流水线 (TSP) TDC 和一个数字核心,其中操作模式由状态机控制。受 [1] 的启发,所提出的 DTCB 的工作原理如图 2 所示。AL-TCB 监测电极电压 V ESn -V CM (1≤n≤N;此处,N=4)并调整后续刺激脉冲的幅度而不产生额外的 SA,而当 |V ESn -V CM | 过大而需要立即去除电荷时,IB-TCB 在下一个刺激脉冲之前完成 CB。在第一个 T CC 开始时,如果 |V ESn - V CM |≤V TH,AL (V TH,AL 是标志着需要立即去除电荷的过电位阈值),则 AL-TCB 导通,并且 V ESn - V CM 在第一个 T CC 周期内由 VTC 和 TDC 数字化。然后将数字数据 D TDCn 馈送到通道间干扰消除 (ICIC) 模块,该模块可补偿由于多极刺激导致的通道间干扰 (ICI) 引入的电压误差。接下来,数字直流增益增强器 (DDGB) 有助于提高 CB 精度,而不会降低 AL-TCB 环路稳定性。为了执行 CB,AL-TCB 的电流(例如,I AL-Cn )(其大小由 DDGB 输出 D ALn 控制)被添加到后续刺激电流中以调整其大小。相反,仅当 |V ESn -V CM |>V TH,AL 时,IB-TCB 才会开启并在一个 T IP 内的几个 T CC 中执行 CB,直到 |V ESn - V CM |
神经人体工程学专注于大脑特征和相关心理状态,这些心理状态是行为的基础,旨在设计人机界面,提高认知和身体领域的表现。脑成像技术,如功能性近红外光谱 (fNIRS) 和脑电图 (EEG),被认为是实现这一目标的关键方法。最近的研究强调了结合 EEG 和 fNIRS 对提高这些接口系统的心理状态解码能力的价值,但对于这些改进是否适用于不同的范式和方法,以及在现实世界中使用这些系统的潜力,人们知之甚少。我们回顾了 33 项研究,比较了双峰 EEG-fNIRS 和单峰 EEG 和 fNIRS 在神经人体工程学的几个子领域中的心理状态解码准确性。根据这些研究,我们还考虑了在现实世界环境中利用这些系统的可穿戴版本的挑战。总体而言,所审查的研究表明,尽管在概念和方法方面存在重大差异,但双峰 EEG-fNIRS 的表现优于单峰 EEG 或 fNIRS。然而,要将双模态 EEG-fNIRS 应用于自然条件下,还有许多工作要做。我们考虑这些要点,以确定双模态 EEG-fNIRS 研究中预期或希望取得进展的方面。