通过将聚合物掺入LDH纳米粒子中,可以获得具有独特功能和结构的聚合物基纳米复合膜,其可以通过逐层自组装方法定义为溶液插层、熔融插层或乳液插层(12,13)。在药物输送领域,无机材料的使用可能会产生有害的副产物并影响环境。相反,使用天然物质和绿色合成方法可以最大限度地减少能源消耗和污染物的产生,并改善人类健康(14,15)。因此,结构上由几种有机大分子(如碳水化合物、蛋白质、核酸和脂肪酸)组成的天然物质(如蜂蜜)引起了人们的兴趣(16,17)。天然基纳米复合材料通常被认为是无毒和生物相容性的,具有高化学稳定性和pH依赖性的溶解度(12,18)。它们通过廉价的工艺制备而成,并且可以轻松修改为具有独特的物理化学性质,以用于环境科学、催化、生物传感、化妆品和医学等不同应用(10、19)。尽管转换为生物来源可能会解决许多重大问题,但活性成分在储存过程中可能通过水解或氧化而快速降解,并且由于释放曲线受限导致治疗反应不足,因此凸显了使用生物来源的必要性
在疟疾高发地区,已经实施了几种干预策略,其中包括间歇性预防治疗 (IPT),这是一种阻断传播并降低疾病发病率的策略。然而,实施 IPT 策略引起了真正的担忧,因为它干预了对疟疾的自然获得性免疫的发展,而这种免疫需要与寄生虫抗原持续接触。本研究调查了在学童中应用二氢青蒿素-哌喹 (DP) 或青蒿琥酯-阿莫地喹 (ASAQ) IPT (IPTsc) 是否会损害对六种疟疾抗原的 IgG 反应性。坦桑尼亚东北部的一项 IPTsc 试验以四个月的间隔施用了三剂 DP 或 ASAQ,并对学童进行了随访。本研究使用酶联免疫吸附试验 (ELISA) 技术比较了干预组和对照组中 IgG 对恶性疟原虫红细胞膜蛋白 1 (PfEMP-1) 的 GLURP-R2、MSP1、MSP3 和 CIDR 结构域 (CIDRa1.1、CIDRa1.4 和 CIDRa1.5) 的反应性。研究期间,共有 369 名学童参与分析,对照组、DP 组和 ASAQ 组分别有 119 名、134 名和 116 名参与者。在干预期期间和干预期后,疟疾抗原识别的广度显著增加,且研究组间并无差异(趋势检验:DP,z 分数 = 5.92,p < 0.001,ASAQ,z 分数 = 6.64,p < 0.001 和对照组,z 分数 = 5.85,p < 0.001)。在所有访视中,对照组和 ASAQ 组对任何测试抗原的识别均无差异。然而,在 DP 组中,干预期期间 IPTsc 不会削弱针对 MSP1、MSP3、CIDRa1.1、CIDRa1.4 和 CIDRa1.5 的抗体,但会削弱针对 GLURP-R2 的抗体。
1. 厦门大学医学院肿瘤研究中心,厦门 361102。2. 香港中文大学理工学院,深圳市创新药物合成重点实验室,深圳 518172。3. 杜克大学 Thomas Lord 机械工程与材料科学系,北卡罗来纳州达勒姆 27708,美国。4. 广东药科大学第一附属医院,广州 510026。5. 加利福尼亚大学环境毒理学系,加利福尼亚州河滨市 92507,美国。6. 福建医科大学基础医学院免疫治疗研究所,福州 350122。7. 厦门大学医学中心附属翔安医院消化内科、妇产科,厦门 361000。 8. 山东第一医科大学附属省立医院麻醉科,山东济南 250021。
由于其芳族结构的固有稳定性,富含电子杂种五个五环(ERHP)(例如噻吩衍生物和吡咯衍生物)的聚合具有挑战性。所得聚合物是有机半导体材料,在有机电子和生物电子设备中广泛使用。在这里,我们报告了有效的氢原子转移(HAT)光催化剂,它是二聚化产物(1,2-双(4-(2-羟基甲氧基)苯基)乙烷-1,2-二酮),是由Irgacure 2959的光解2959的光解产生的酰基自由基,以及用于脱发的酸性化合物。脱氢作用是通过双HAT过程发生的,从而实现了ERHP的光聚合。此反应还允许我们在水凝胶中制造三维(3D)导电途径。可以打印水凝胶以形成聚苯乙烯磺酸盐的聚苯乙烯磺酸盐,形成独立的3D导电结构,精度为220 nm,明显超过了使用先前方法(> 10 µm)构建的结构。该方法引入了3D电极精确工程的机会,有可能扩大有机电子和生物电子药物的应用。
神经母细胞瘤是一种胚胎癌,在幼儿死亡造成了成比例的疾病。测序数据在该癌症中很少有反复突变的基因,尽管表观遗传途径与病原体相关。我们使用了基于表达的计算屏幕,该屏幕揭示了去泛素化酶对患者生存的影响,以识别潜在的新靶标。,我们将His-Tone H2B去泛素化酶USP44视为神经母细胞瘤患者生存最大影响的酶。高水平的USP44与转移性疾病,不利组织学,晚期患者年龄和MYCN扩增显着相关。表达高水平USP44的肿瘤患者的子集的生存率明显较差,包括缺乏MYCN扩增的肿瘤。我们从经验上表明,USP44调节神经母细胞瘤细胞的增殖,
为了解决环境污染,我们开发了Ni/Al分层双氢氧化物氧化物(Ni/Al-Go)吸附剂材料,目的是消除甲基蓝(MB)染料污染物。通过检查许多实验因素,包括温度,再生/再利用程序,pH和时间及其对材料的影响,探索了吸附过程。等温线的适当模型是langmuir等温线。在60°C的温度下,MB染料的Ni/Al-Go材料的最大吸附能力为61.35 mg/g。热力学特征表明,随着温度的升高,吸附过程既具有吸热和自发性。再生方法表明,Ni/al-Go材料具有高度稳定的结构,因此可以将其用于五个循环,在第五个周期中的再生速率为93.49%。对所有材料产生最佳结果的pH是pH 10,动力学模型表现出伪二阶行为。版权所有©2024作者,由MKICS和BCREC Publishing Group发布。这是CC BY-SA许可证(https://creativecommons.org/licenses/by-sa/4.0)下的开放访问文章。关键字:分层双氢氧化物;氧化石墨烯;亚甲基蓝;吸附方法如何引用:A。Amri,S。Wibiyan,A。Wijaya,N。Ahmad,R。Mohadi,A。Lesbani(2024)。使用Ni/Al分层双氢氧化物氧化烯型复合材料有效地吸附亚甲基蓝色染料。化学反应工程与催化公告,19(2),181-189(doi:10.9767/bcrec.20121)permalink/doi:https://doi.org/10.9767/bcrec.20121
摘要:在这项工作中,使用硅烷偶联剂(IPTES)和聚合物块(ITP)成功合成了一种新型功能化的氧化石墨烯成核核定剂(GITP),以有效地改善PET的结晶和机械性能。为了全面研究官能化的GO对PET性质的影响,通过使用熔体混合方法将GITP引入PET矩阵来制备PET/GITP纳米复合材料。结果表明,与纯PET相比,PET/GITP具有更好的热稳定性和结晶性能,从而将熔化温度从244.1℃提高到257.1°C,并将其结晶度从595 s降低到201 s。此外,PET/GITP纳米复合材料的结晶温度从185.1℃至207.5℃升高,拉伸强度从50.69 MPa提高到66.8 MPa。本研究为官能化的GO提供了一种有效的策略,作为一种成核剂,可以改善PET聚酯的结晶和机械性能。
总共包括11项研究,有1464名研究参与者。包括II期和III期试验。在纳入的研究中,四项研究评估了抗CD3单克隆抗体耳圆脂蛋白的干预措施。另一种抗CD3单克隆抗体Teplizumab被评估为四项研究的干预措施,而两项研究评估了抗CD20抗体利妥昔单抗,一项研究评估了Abatacept作为其介入药物。otelixizumab在较高剂量时表现出益处,但与Ebstein-Barr病毒重新激活和巨细胞病毒感染等不良反应有关,而在较低剂量下,C肽水平或糖基化血红蛋白(HBA1C)未能显示出显着差异。teplizumab在减少C肽丧失和外源胰岛素需求方面表现出了希望,并且与不良事件有关,例如皮疹,淋巴细胞减少症,尿路感染和细胞因子释放综合征。但是,这些反应仅与治疗起源有关,它们自行消退。利妥昔单抗改善了C肽反应,而Abatacept疗法表现出降低C-肽的损失,改善了C肽水平并降低了HBA1C。
为了解决环境污染,我们开发了Ni/Al分层双氢氧化物氧化物(Ni/Al-Go)吸附剂材料,目的是消除甲基蓝(MB)染料污染物。通过检查许多实验因素,包括温度,再生/再利用程序,pH和时间及其对材料的影响,探索了吸附过程。等温线的适当模型是langmuir等温线。在60°C的温度下,MB染料的Ni/Al-Go材料的最大吸附能力为61.35 mg/g。热力学特征表明,随着温度的升高,吸附过程既具有吸热和自发性。再生方法表明,Ni/al-Go材料具有高度稳定的结构,因此可以将其用于五个循环,在第五个周期中的再生速率为93.49%。对所有材料产生最佳结果的pH是pH 10,动力学模型表现出伪二阶行为。版权所有©2024作者,由MKICS和BCREC Publishing Group发布。这是CC BY-SA许可证(https://creativecommons.org/licenses/by-sa/4.0)下的开放访问文章。关键字:分层双氢氧化物;氧化石墨烯;亚甲基蓝;吸附方法如何引用:A。Amri,S。Wibiyan,A。Wijaya,N。Ahmad,R。Mohadi,A。Lesbani(2024)。使用Ni/Al分层双氢氧化物氧化烯型复合材料有效地吸附亚甲基蓝色染料。化学反应工程与催化公告,19(2),181-189(doi:10.9767/bcrec.20121)permalink/doi:https://doi.org/10.9767/bcrec.20121
1 Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA 2 Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322, USA 3 U.S. Army Combat Capabilities Development Command Chemical Biological Center, Research & Technology Directorate, Aberdeen Proving Ground, MD 21010, USA 4 Ballydel Technologies, Inc., Wilmington, DE 19803,美国5电气与计算机工程系,特拉华大学,纽瓦克大学,德国,19711年,美国6材料科学与工程系,特拉华大学,纽瓦克大学,纽瓦克,19711年,美国,美国