躁郁症(BD)是一种慢性疾病,影响了世界人口的大约2.5%(Clemente等,2015; Merikangas等,2011)。虽然躁狂症状是BD的定义特征,但BD患者通常会花费更多的时间(Judd等,2002,2003),并且患者本身将抑郁症视为最繁重的情绪状态(MąCzka等,2010)。抑郁症状(甚至是亚州)与功能障碍,自杀性和对生活质量的负面影响有关(Altshuler等,2006;Bonnín等,2012; Hadjipavlou and Yatham,dive; (Ruggero等,2007)。目前可用于BD抑郁症的药物疗法有局限性(Frye等,2014; Yalin and Young,2020)。锂和抗精神病药与显着的副作用有关(Kemp,2014; Ketter等,2014),而抗抑郁药具有突破性躁狂症状的风险(Tondo等,2010)。即使接受治疗,许多患者也无法充分反应或重新恢复全部功能(Huxley和Baldessarini,2007; Wingo等,2010)。
本研究重点系统研究 Ti 6Al 2Sn 4Zr 2Mo Si 钛合金,并表征 ¡ + ¢ (等轴和双峰) 和 ¡ + ¡ A (双相) 微观结构。它对双相 ( ¡ + ¡ A ) 微观结构的突出优势提供了更多见解,尤其是其出色的加工硬化和强度-延展性平衡。讨论了形成等轴、双峰和双相微观结构所需的热处理条件及其对晶粒尺寸和相比例的影响。它展示了如何通过热处理温度、保温时间和可能的时效过程来控制微观结构参数。研究了这些微观结构因素对每种合金拉伸性能的影响,特别是对强度 (屈服应力、极限拉伸强度)、延展性 (塑性伸长率) 和加工硬化性能的影响。将双相 ( ¡ + ¡ A ) 微观结构与等轴和双峰微观结构进行比较,并展示其优势,突出双相微观结构具有更好的强度-延展性平衡和优异的加工硬化性能。事实上,双相 ( ¡ + ¡ A ) 微观结构的变形微观结构比双峰 ( ¡ + ¢ ) 微观结构表现出更均匀的应变分配。因此,这项工作证明了优化的双相 ( ¡ + ¡ A ) 微观结构在室温下增强拉伸性能的潜力。最后,使用梯度增强回归树的机器学习模型来量化微观结构因素(微观结构类型、晶粒尺寸和相对比率)对机械性能的重要性。[doi:10.2320 / matertrans.MT-MLA2022009]
利用电磁 (EM) 场进行的无线通信是人体周围可穿戴设备之间信息交换的支柱。然而,对于植入式设备,电磁场会在组织中被大量吸收,而其他传输模式(包括超声波、光学和磁电方法)会由于一种能量形式转换为另一种能量形式而导致大量的转导损耗,从而增加了整体的端到端能量损耗。为了解决脑植入物中无线供电和通信的挑战以及低端端通道损耗,我们提出了双相准静态脑通信 (BP-QBC),通过使用电准静态 (EQS) 信号,避免了因没有场模态转换而导致的转导损耗,在通道长度约为 55 毫米的情况下实现 < 60dB 的最坏情况端到端通道损耗。 BP-QBC 利用基于偶极耦合的信号在脑组织内传输,在发射器 (TX) 中使用差分激励,在接收器 (RX) 中使用差分信号拾取,同时通过阻断流经脑组织的任何直流电流路径,在 1MHz 载波频率下提供比传统人体电流通信 (G-HBC) 低 ~41 倍的低功耗。由于通过人体组织的电信号传输是电准静态的,频率高达几十 MHz,因此 BP-QBC 可实现从植入物到外部可穿戴设备的可扩展 (bps-10Mbps) 占空比上行链路 (UL)。BP-QBC TX 的功耗在 1Mbps 时仅为 0.52 μW(占空比为 1%),这在从可穿戴设备中枢通过 EQS 脑通道到植入物的下行链路 (DL) 中收集的功率范围内,外部施加的电流小于 ICNIRP 安全限值的 1/5。此外,BP-QBC 消除了对颅下询问器/中继器的需求,因为它由于没有场传导而提供了更好的信号强度。这种低端到端通道损耗和高数据速率是由一种全新的大脑通信和供电方式实现的,在神经生物学研究、脑机接口、电疗和联网医疗领域具有深远的社会和科学影响。
基于硫代构化相位变化材料(PCM)的光子记忆细胞的实现引起了人们的关注,因为它们的快速,可逆和非易失性编程功能。[1]在硅光子平台上整合PCM存储器单元,例如GE 2 SB 2 TE 5(GST)和Aginsbte(AIST),[2] [2]可以使全观内存处理,并在其电子交通方面具有显着的优势,并在带状,速度,速度,速度,速度,速度,速度,速度,速度和并行处理中。[3,4]在开发光学逻辑门,[5,6]可恢复可填充的Photonic电路,[7-9]电气控制的光子记忆细胞,[10,11]等离激源性波导开关,[12,13] Neuro-neuro启发的光子Synapes,[14]和Neural Net-Net-net-net-net-net-net-net-net-net-net-net-net-Net-net-net-net-Net-net-net-Net-net-net-net-Ner ner Net-net-net-nerter Worts中。[15,16]先前的研究系统地研究了光子记忆细胞对二硝基二硝酸盐仪(SI 3 N 4)和硅启用器(SOI)平台的性能,[17,18],在这些平台上,从基线(完全结晶的状态)观察到了单调增加的透射率,该传播是作为拟合程序的拟合功率。这个完善的单调光学编程使可变的可变性能够归因于Hebbian学习的基本生物神经突触的峰值依赖性可塑性(STDP)。[14]值得注意的是,最近在各种光电平台上开发了人工突触,例如[19],基于Chalcogenide玻璃波波[20]和H-BN/WSE 2异质结构。[21]在STDP中,神经元之间的连接强度,即突触重量或突触效率,根据神经元的输出和输入尖峰的相对时机进行调整。[22]突触可塑性的基本公式,即突触重量的变化可以表示为δw¼f(δt),其中δt p p p pre,t pre,t post和t pre分别是后和神经前的时间。δT<0带有δW<0和δT> 0引入长期抑郁(LTD),并带有δW> 0的长期增强(LTP)。
● 电休克疗法 (ECT) 是一种脑刺激程序,可帮助缓解严重的双相情感障碍症状。通常仅在患者病情在接受其他治疗(如药物治疗或心理治疗)后仍未改善,或者需要快速反应(如存在自杀风险或紧张症(一种无反应状态))的情况下,才会考虑使用 ECT。 ● 经颅磁刺激 (TMS) 是一种脑刺激,它使用磁波(而不是 ECT 的电刺激)在一系列治疗过程中缓解抑郁症。虽然 TMS 不如 ECT 有效,但它不需要全身麻醉,并且几乎不会影响记忆或认知。 ● 光疗法是季节性情感障碍 (SAD) 的最佳循证治疗方法,许多双相情感障碍患者在冬季会经历抑郁症的季节性恶化,在某些情况下甚至会发展为 SAD。对于双相抑郁症的季节性恶化程度较轻的情况,也可以考虑使用光疗法。
利用电磁 (EM) 场进行的无线通信是人身周围可穿戴设备之间信息交换的支柱。然而,对于植入式设备,电磁场会在组织中产生大量吸收,而其他传输模式(包括超声波、光学和磁电方法)会由于一种能量形式转换为另一种能量形式而导致大量的转导损耗,从而增加了整体的端到端能量损耗。为了解决脑植入物中无线供电和通信的挑战并实现低端端通道损耗,我们提出了双相准静态脑通信 (BP-QBC),通过使用电准静态 (EQS) 信号,在通道长度约为 55 毫米的情况下实现 < 60dB 的最坏情况端到端通道损耗,从而避免了因没有场模态转换而导致的转导损耗。 12 BP-QBC 利用基于偶极耦合的信号在脑组织内传输,在发射器 (TX) 处使用差分激励,在接收器 (RX) 处拾取差分信号,同时通过阻断通过脑组织的任何直流电流路径,在 1MHz 载波频率下提供约 41 倍的低功耗,相对于传统的人体电流通信 (G-HBC)。由于通过人体组织的电信号传输是电准静态的,频率高达数十 MHz,因此 BP-QBC 允许从植入物到外部可穿戴设备的可扩展 (bps-10Mbps) 占空比上行链路 (UL)。 BP-QBC TX 的功耗在 1Mbps(占空比为 1%)时仅为 0.52 μW,这在从可穿戴中枢通过 EQS 脑通道到植入物的下行链路 (DL) 中收集的功率范围内,外部施加的电流小于 ICNIRP 安全限值的 1/5。此外,BP-QBC 消除了对颅下询问器/中继器的需求,因为它由于没有场传导而提供了更好的信号强度。如此低的端到端通道损耗和高数据速率是由一种全新的脑部通信和供电模式实现的,对神经生物学研究、脑机接口、电药物和互联医疗保健等领域具有深远的社会和科学影响。
您可以获取其他语言、大号字体、盲文或您喜欢的格式的本文件。联系 Amanda Parish,电话:503-383-8142,或发送电子邮件至 amanda.b.parish@dhsoha.state.or.us。我们接受所有中继电话,或者您可以拨打 711。健康政策与分析 交付系统创新办公室 500 Summer St NE Salem, OR 97301 OHA 7549a (03/2020)
oft和可拉伸的电子设备正在集成到下一代电子设备中,其中包括软机器人1,可穿戴电子2,生物医学设备3和人类 - 机器人界面4、5。在开发可拉伸传感器6,显示7,加热器8,储能设备9和集成电路(ICS)10的新颖材料和架构中取得了令人鼓舞的进步。但是,该领域仍然缺乏具有集成计算,有效的数据传输和微型电损失的高度可拉伸的多层电子电路。商业电子产品可以提供各种不引人注目的,廉价的,高性能的ICS,从微控制器到放大器,但是使用这些ICS创建可拉伸的电路需要每个电路元件之间的强大界面。在这项工作中,我们通过采用双相式镀机合金(BGAIN)来介绍可伸缩的印刷电路板(PCB)组件的可拉伸版本,从而创建了高度可拉伸的导电痕迹和柔软的刚性电子组件之间的耐用接口。正在积极研究三种主要策略,以实现可拉伸的电子设备:基于结构的可拉伸导体,本质上可拉伸的导体和导电复合材料。高导电性,不可延迟的薄金属膜可以几何图案化,以获得平面外变形和线性弹力10-13。尽管它们与传统的电子合并良好接触,但它们的可伸缩性和组分的面积密度通常受到限制。一种流行的方法,放置常规电子组件本质上可拉伸的导体,例如室温液体金属(Eutectic Callium-Indium,Egain 14),离子诱导器15和导电聚合物16,17-不需要复杂的图案,但每个苦难都需要复杂的,但每个遭受了几种苦难,包括几种吸水物,包括泄漏,脱落,脱何,脱何,递减,递减,递减和低电导率。导电夹杂物聚合物复合材料也可以在没有复杂图案的情况下拉伸,但通常患有最大菌株和高电阻18、19。此外,在菌株20、21期间,关于可拉伸导体的报告相对较少。已经大力努力在可伸缩零件和市售的高性能ICS之间建立可靠的连接。
精神障碍是重大的公共卫生挑战,因为它们是全球疾病负担的主要因素,并严重影响个人的社会和经济福利。本综合综述集中于两种精神障碍:重度抑郁症 (MDD) 和双相情感障碍 (BD),过去十年中出现了值得关注的出版物。如今,使用生物标志物对精神障碍的表型表征需求很大。脑电图 (EEG) 信号可以为 MDD 和 BD 提供丰富的特征,然后它们可以提高对这些精神障碍的病理生理机制的理解。在本综述中,我们重点关注采用由 EEG 信号馈送的神经网络的文献。在使用 EEG 和神经网络的研究中,我们讨论了各种基于 EEG 的协议、生物标志物和用于检测抑郁症和双相情感障碍的公共数据集。我们最后进行了讨论并提出了宝贵的建议,这将有助于提高已开发模型的可靠性,并实现更准确、更确定的基于计算智能的精神病学系统。对于利用脑电图信号识别抑郁症和躁郁症的研究者来说,这篇评论将是一个结构化且有价值的起点。