合成生物学的目标之一是实现具有可编程输入和输出的任意分子回路的设计。这样的电路桥接了电子和自然电路的性质,以可预测的活细胞内处理信息。基因组编辑是合成分子回路的潜在强大组成部分,无论是用于调节靶基因的表达还是稳定地记录信息到基因组DNA。然而,编程分子事件,例如蛋白质 - 蛋白质相互作用或作为基因组编辑触发因素诱发的接近性仍然具有挑战性。在这里,我们演示了一种称为P3编辑的策略,该策略将蛋白质 - 蛋白质接近性与功能性CRISPR-CAS9双组分指南RNA的形成联系起来。通过工程化crRNA:tracrrna相互作用,我们证明了各种已知的蛋白质 - 蛋白质相互作用以及化学诱导的蛋白质结构域的二聚化,可用于激活人类细胞中的素数编辑或基础编辑。此外,我们探讨了P3编辑如何结合基于ADAR的RNA传感器的输出,有可能允许特定的RNA在较大电路中诱导特定的基因组编辑。我们的策略增强了基于CRISPR的基因组编辑的可控性,从而促进了其在活细胞中部署的合成分子电路中的使用。
我们描述了一项关于紧急通信中心工作协调的观察性研究,在该中心,一个由通信专家组成的共置团队从事与院前医疗团队沟通以及协调患者护理和运输的复杂活动。与为提高工作效率和减少冗余而引入的具有明确工作角色和团队结构的团队不同,我们研究的团队缺乏角色区分。为了更好地了解在这些条件下如何完成复杂的工作,我们在中心的控制室进行了现场观察并采访了通信专家。我们发现通信专家通过使用物质和非物质协调机制的混合来进行自组织,包括工作时间表、计算机系统和默契来协调任务。利用这些发现,我们随后确定了需要技术支持的自组织、共置和时间紧迫的团队合作的三个特点:任务所有权意识、任务自我分配和非正式团队层级。最后,我们讨论支持这些团队合作功能的技术要求。
合成生物学的目标之一是能够设计具有可编程输入和输出的任意分子电路。此类电路将电子电路和自然电路的特性结合起来,以可预测的方式在活细胞内处理信息。基因组编辑是合成分子电路的潜在强大组成部分,无论是用于调节目标基因的表达还是用于将信息稳定地记录到基因组 DNA 中。然而,将蛋白质-蛋白质相互作用或诱导接近等分子事件编程为基因组编辑的触发因素仍然具有挑战性。在这里,我们展示了一种称为“P3 编辑”的策略,它将蛋白质-蛋白质接近与功能性 CRISPR-Cas9 双组分向导 RNA 的形成联系起来。通过设计 crRNA:tracrRNA 相互作用,我们证明了各种已知的蛋白质-蛋白质相互作用以及化学诱导的蛋白质结构域二聚化可用于激活人类细胞中的原始编辑或碱基编辑。此外,我们还探索了 P3 编辑如何整合基于 ADAR 的 RNA 传感器的输出,从而可能允许特定 RNA 在更大的电路中诱导特定的基因组编辑。我们的策略增强了基于 CRISPR 的基因组编辑的可控性,有利于其在活细胞中部署的合成分子回路中的应用。
合成生物学的目标之一是能够设计具有可编程输入和输出的任意分子电路。此类电路将电子电路和自然电路的特性结合起来,以可预测的方式在活细胞内处理信息。基因组编辑是合成分子电路的潜在强大组成部分,无论是用于调节目标基因的表达还是用于将信息稳定地记录到基因组 DNA 中。然而,将蛋白质-蛋白质相互作用或诱导接近等分子事件编程为基因组编辑的触发因素仍然具有挑战性。在这里,我们展示了一种称为“P3 编辑”的策略,它将蛋白质-蛋白质接近与功能性 CRISPR-Cas9 双组分向导 RNA 的形成联系起来。通过设计 crRNA:tracrRNA 相互作用,我们证明了各种已知的蛋白质-蛋白质相互作用以及化学诱导的蛋白质结构域二聚化可用于激活人类细胞中的原始编辑或碱基编辑。此外,我们还探索了 P3 编辑如何整合基于 ADAR 的 RNA 传感器的输出,从而可能允许特定 RNA 在更大的电路中诱导特定的基因组编辑。我们的策略增强了基于 CRISPR 的基因组编辑的可控性,有利于其在活细胞中部署的合成分子回路中的应用。
多组分分子机器在生物学中无处不在。我们回顾了使用自主二分马尔可夫动力学描述其热力学性质的最新进展。第一和第二定律可以拆分为适用于双组分系统每个子系统的独立版本,说明我们不仅可以解决子系统之间的能量流,还可以解决信息流,量化每个子系统的动态如何影响联合系统的熵平衡。将该框架应用于分子级传感器可以推导出更严格的能量需求界限。可以从统一的角度研究双组分强耦合机器,量化它们在多大程度上通过转换功率进行常规运行,或者像信息引擎一样通过生成信息流将热波动整流为输出功率。
描述 Araldite ® 2081-10 是一种快速固化、不易燃的双组分丙烯酸粘合剂,用于粘合多种塑料和其他基材 * 聚烯烃和低表面能材料除外。它具有高强度和良好的柔韧性,气味低。这种多用途粘合剂的开放时间为 10 分钟,可在多种基材上进行快速组装操作。
如何使用 Araldite® Standard 是一种强力的双组分环氧树脂,工作时间长。部件可在 80 分钟内重新定位。耐油、耐化学品、耐冲击。耐高温(-30°C 至 65°C)。可承受粗暴搬运。请勿用于修复或粘合会接触食物或饮料的物品。不建议用于将后视镜粘合到汽车挡风玻璃上。
该复合材料可以注塑或挤出,并且根据所选的基质聚合物,也可以进行机械加工。此外,它可以通过压制高度压实,并通过轧制和压延加工成薄层可层压中间体。例如,复合材料可用于功能化组件,其中导电或导热性将通过集成工艺实现,例如双组分注塑或共挤出。作为电缆护套或外壳的全表面应用,可以实现与金属材料相当的屏蔽衰减(300kHz-1.2GHz 时为 80-90dB)。