图 1 DSB 修复途径总览 .DSB 发生后 , Ku70-80 会最先结合上来 , 如果不发生末端切除 , 会继而招募 DNA-PKcs, ligase IV, XRCC4 等 cNHEJ 核心因子介导 cHNEJ 修复途径 .如果末端发生 MRN-CtIP 介导的末端切除 , 则会产生 ssDNA 抑制 cNHEJ 修复途 径 .短程切除和长程切除产生的 ssDNA 可以通过链内退火进行修复 , 分别被称为 alt-EJ 和 SSA.长距离切除产生的 ssDNA 也可以 在 BRCA2-PALB2-BRCA1 复合体的帮助下和 RAD51 形成核蛋白纤维 , 进行同源找寻和连入侵过程 , 从而进入 HR 修复途径 .HR 途径又可以分为 BIR, SDSA 和 DSBR Figure 1 Overview of DSB repair pathways.The broken ends are first recognized and bound by Ku70-80.Without end resection, other cNHEJ core factors, such as DNA-PKcs, ligase IV, XRCC4, would be recruited to DSBs to mediate cNHEJ pathway.When MRN-CtIP-mediated resection occurs, the generated ssDNA will inhibit cNHEJ pathway.ssDNA from short-range and long-range resection can anneal in-strand to resolve the damages, termed Alt-EJ and SSA, respectively.ssDNA from long-range resection can also be bound by RAD51 to form nucleoprotein filament under the help of BRCA2-PALB2-BRCA1 complex.Nucleoprotein filament carry out homologous searching and strand invasion, promoting HR pathway.The HR pathway could be divided into BIR, SDSA and DSBR
机器人手臂任务中的感知技术。通过分析机器人臂的运动学并设计双臂合作系统,将视觉点云技术结合起来,实现双臂合作握把,并通过使用ROS平台来验证合作社CON-TROL策略的有效性,从而构建双臂臂系统的实验平台。主要研究内容包括分析机器人ARM运动学的正和反向运动学模型,视觉点云识别在双臂合作任务中的应用,双臂合作控制策略的实现以及合作掌握的实验结果和分析。通过这项研究,成功设计和实现了基于ROS的双机器人臂合作感,并实现了双臂合作控制策略的有效性。
达里乌斯(Div> Darius)一直专注于全球智能保健产品的制造已有10多年的历史,并积累了超过1000万单位的保健产品。目前,该公司有16个§ĉĉáì¶çĭ。 Öîtouminstrecoustout。
本月,风城是必去之地,超过 115,000 名工业决策者将前往芝加哥参加 9 月 10 日至 15 日举行的国际制造技术展览会。IMTS 专注于制造体验,该展会旨在展示行业成功的关键。与会者将近距离观察和尝试新技术,与技术专家交谈,并找到灵感,为您和您的客户带来最佳解决方案。根据 IMTS 网站,95% 的与会者对参观展览感到满意,而 86% 的与会者成功找到了特定产品或解决了制造问题。这是必去之地,我希望 Gear Solutions 的编辑和广告团队有机会在展会期间与您交谈。本期《Gear Solutions》专门介绍 IMTS,其中包含许多有趣的文章和专栏,可帮助您为展会做好准备。例如:
键盘和触摸屏被广泛用于控制电子设备,但对于灵活性受损或患有神经系统疾病的人来说,操作起来可能很困难。已经开发了几种辅助技术,例如语音识别和眼动追踪,以提供替代的控制方法。然而,这些技术在使用和维护方面可能存在问题。我们在此报告了一种咬合控制光电系统,该系统使用集成在护齿套中的机械发光分布式光纤传感器。对机械刺激敏感的磷光体排列在柔性护齿套中的接触垫阵列中;通过在侧向位置使用独特的咬合接触模式,光纤传感器可以通过比率发光测量区分各种形式的机械变形。通过将设备与机器学习算法相结合,可以将复杂的咬合模式转换为特定的数据输入,准确率为 98%。我们表明,交互式护齿套可用于操作电脑、智能手机和轮椅。
摘要一种未来的人造视网膜,可以恢复盲人的高敏度视力,将依靠能够使用自适应,双向和高分辨率设备来读(观察)和写入(观察)和写(控制)神经元的尖峰活动。尽管当前的研究重点是克服构建和植入这种设备的技术挑战,利用其能力来实现更急性的视觉感知也将需要实质性的计算进步。使用Ex Vivo多电极阵列实验室原型使用高密度的大规模记录和刺激,我们构成了一些主要的计算问题,并描述了当前的进度和未来解决方案的机会。首先,我们通过使用从大型实验数据集中学到的低维变异性变异性的低维歧管来确定盲视网膜自发活动的细胞类型和位置,然后有效地估计其视觉响应特性。第二,我们通过通过电极阵列传递电流模式来估计对大量相关电刺激的视网膜响应,尖峰对产生的记录进行排序,并使用结果来开发诱发响应的模型。第三,我们通过在视觉系统的整合时间内暂时抛弃各种电刺激的收集来重现给定的视觉目标的所需响应。一起,这些新颖的方法可能会在下一代设备中大大增强人造视力。
结直肠癌(CRC)是世界上最普遍的癌症类型之一,在美国的癌症死亡中排名第二。尽管最近的筛查和治疗有所改善,但与CRC相关的死亡人数仍然非常重要。CRC治疗所涉及的复杂性源于异常途径之间的多个致癌突变和串扰。这要求使用先进的分子遗传学来了解负责该癌症的潜在途径相互作用。在本文中,我们从文献中构建了CRC途径,并使用有关健康与肿瘤结肠细胞的现有公共数据集构建了CRC途径,我们确定了突变的基因和途径,并且可能对疾病进展负有影响。然后,我们在CRC途径中引入药物,并使用布尔建模技术,推断出产生最大细胞死亡的药物组合。我们的理论模拟证明了Cryptanshinone(一种涉及中国草药衍生物)的有效性,它通过靶向关键的致癌突变和增强细胞死亡而实现。最后,我们使用HT29和HCT116人类结直肠癌细胞系上的湿实验室实验验证了理论结果。
摘要:癌症代谢是癌症的一个特征。代谢可塑性定义了癌细胞在疾病进展的各个阶段重新编程大量代谢途径以满足独特能量需求的能力。细胞状态转变是一种表型适应,它赋予癌细胞独特的优势,帮助癌细胞克服进展障碍,包括肿瘤起始、扩张性生长、对治疗的抵抗、转移、定植和复发。人们越来越认识到,癌细胞需要及时适当地重新编程其细胞代谢,以支持与新表型细胞状态相关的变化。我们讨论了癌细胞可能采取的代谢改变,这些改变与维持癌症干细胞、激活上皮-间质转变程序以促进转移以及获得耐药性有关。虽然癌细胞利用这种代谢可塑性来生存,但它们对某些代谢途径的依赖和上瘾也提供了可以利用的治疗机会。