信息图被用来讨论两种不同信息测度之间的关系,如冯·诺依曼熵与误差概率[1],或冯·诺依曼熵与线性熵[2]。对于线性(L)熵和冯·诺依曼(S)熵,通常对任何有效的概率分布ρ绘制(L(ρ),S(ρ))图。这里,ρ也可以表示量子系统的密度矩阵(或者更确切地说是具有其特征值的向量),这也是本文的主要兴趣所在。我们特别关注由此产生的信息图区域的边界,其中相关的概率分布(或密度矩阵)将被表示为“极值”。在参考文献[3]中,对两个量子比特的熵进行了比较(有关离子-激光相互作用的情况,另见[4])。在 [5] 中,对任意熵对的信息图进行了详细研究。文中证明了,对于某些条件(线性、冯·诺依曼和雷尼熵满足),极值密度矩阵始终相同。文中给出了反例,但一般来说,偏差会非常小,并且可以安全地假设这些极值密度矩阵具有普适性。在本文中,我们将使用信息图来获取对称多量子系统中粒子纠缠的全局定性信息,该系统由广义“薛定谔猫”(多组分 DCAT)态(在 [6] 中首次引入,作为振荡器的双组分偶态和奇态)描述。这些 DCAT 态原来是 U(D)自旋相干(准经典)态的 ZD−12 宇称改编,它们具有弱重叠(宏观可区分)相干波包的量子叠加结构,具有有趣的量子特性。为此,我们使用一和二量子Dit 约化密度矩阵 (RDM),它是通过从由 cat 态描述的 N 个相同量子Dit 的复合系统中提取一两个粒子/原子,并追踪剩余系统获得的。众所周知(见 [3] 及其参考文献),这些 RDM 的熵提供了有关系统纠缠的信息。我们将绘制与这些 RDM 相关的信息图,并提取有关一和二量子Dit 纠缠的定性信息,以及相应 RDM 的秩,这也提供了有关原始系统纠缠的信息 [7]。我们将应用这些结果来表征 3 级全同原子 Lipkin–Meshkov–Glick 模型中发生的量子相变 (QPT),以补充 [ 8 ] 的结果。具体来说,我们已经看到,一和二量子 DIT RDM 的秩可以被视为检测 QPT 存在的离散序参量前体。本文结构如下。第 2 节回顾了信息图的概念,描述其主要属性,特别是关于秩的属性。第 3 节回顾了 U(D) 自旋相干态的概念及其 ZD−12 宇称适配版本 DCAT。在第 4 节中,我们计算了 2CAT 和 3CAT 的一和二量子 Dit RDM、它们的线性熵和冯诺依曼熵,绘制了它们并构建了相关的信息图。在第 5 节中,我们使用信息图提供有关 Lipkin–Meshkov–Glick (LMG) 模型中 QPT 的定性信息。第 6 节致力于结论。
怀疑论的终结 i 《哲学杂志》 107 (5): 243-256, 2010。Sherrilyn Roush 人们普遍认为,怀疑论者在以下问题上有着毁灭性的论据。他说,你可能认为你知道自己有手。但是如果你知道你有手,那么你也会知道你不是缸中之脑,不是悬浮在液体中的大脑,电极为你提供由超级计算机生成的完美协调的印象,也不是一个看起来和移动起来都和这个世界一样的世界。如果你知道你有手,你就会知道你不是处于这种状态,因为有手意味着你不是缸中之脑。但你显然不知道你不是缸中之脑——你没有证据将那种状态与你认为你处于的正常状态区分开来。因此,根据反驳结论,你不知道自己有手。至少,如果我们承认怀疑论者在已知蕴涵的情况下知识是封闭的,而我们中的许多人都倾向于这样做,那么怀疑论者至少有一个毁灭性的论点:粗略地说,如果你知道 p,并且你知道 p 蕴涵 q,那么你就知道 q。ii 说这是一个直观上令人信服的论点是轻描淡写;寻找一个不是拍桌子、不是混淆视听或特别恳求的答复的项目已经让哲学家们苦苦思索了一段时间。人们详细地检查了论证的步骤,以找到在压力下会屈服的漏洞。其中一些努力很有趣,很有启发性,我认为有些甚至提供了辩证的胜利,将举证责任转移回了怀疑论者。尽管如此,正如我将要论证的那样,我们忽略了一个非常简单的观点:尽管上述怀疑论论点是有效的,但它有一个错误的前提,即声称我们似乎显然知道的东西蕴涵了我们在检查时似乎显然不知道的东西。我将论证,这一部分论证无法通过保留怀疑论威胁的方式进行修复。因此,如果怀疑论者想说服我们担心我们的普通知识,他将不得不提出一个完全不同的论点。在已知蕴涵下知识的封闭性(以下称为“封闭性”)对于上述怀疑论论证是必要的,但显然不是充分条件。要将封闭性原则应用于我们的案例,我们必须知道有手就意味着人不是缸中之脑。我们无法知道这一点,因为这一蕴涵不成立,而且虚假的主张无法得知,这一点认识论者已经意识到了。这一蕴涵不成立,因为一个人可能是缸中之脑,就上述描述而言,有手。手将无缝地连接到大脑,因此在不可否认的意义上是你的大脑。这些规定描述的场景与缸中之脑的原始场景一样可信。这种情景破坏了怀疑论者所需要的蕴涵,因为有手的缸中之脑是“有手意味着你不是缸中之脑”这一说法的反例。认识论者知道,怀疑论者首先提出的蕴涵主张由于刚才描述的可能性而不成立,因此蕴涵主张通常以显而易见的方式得到支持,即说有手意味着你不是无手的缸中之脑。有时,人们会在强调的词上加一个语气,以传达这样的判断:这个细节很乏味。然后,人们继续讨论
通过石墨烯进行远程外延相互作用的实验证据 Celesta S. Chang 1,2,† 、Ki Seok Kim 1,2,† 、Bo-In Park 1,2,† 、Joonghoon Choi 3,4,† 、Hyunseok Kim 1 、Junsek Jeong 1 、Matthew Barone 5 、Nicholas Parker 5 、Sangho Lee 1 、Kuangye Lu 1 、Junmin Suh 1 、Jekyung Kim 1 、Doyoon Lee 1 、Ne Myo Han 1 、Mingi Moon 6 、Yun Seog Lee 6 、Dong-Hwan Kim 7,8 、Darrell G. Schlom 5,*、Young Joon Hong 3,4,*、和 Jeehwan Kim 1,2,6,9,* 1 麻省理工学院机械工程系,美国马萨诸塞州剑桥 02139,2 麻省理工学院电子研究实验室,美国马萨诸塞州剑桥 02139 3 世宗大学纳米技术与先进材料工程系,首尔 05006,韩国 4 GRI-TPC 国际研究中心和世宗大学纳米技术与先进材料工程系,首尔 05006,韩国 5 康奈尔大学材料科学与工程系,纽约州伊萨卡,14850,美国 6 首尔国立大学机械工程系,首尔,韩国 7 成均馆大学(SKKU)化学工程学院,水原 16419,韩国 8 成均馆大学(SKKU)生物医学融合研究所(BICS),水原 16419,韩国 9 麻省理工学院材料科学与工程系,马萨诸塞州剑桥 02139,美国 † 这些作者的贡献相同。 * 通讯至 jeehwan@mit.edu、yjhong@sejong.ac.kr、schlom@cornell.edu ORCID ID:Celesta S. Chang (0000-0001-7623-950X)、Ki Seok Kim (0000-0002-7958-4058)、Bo-In Park (0000-0002-9084-3516)、崔仲勋 (0000-0002-2810-2784)、郑俊石 (0000-0003-2450-0248)、金贤锡 (0000-0003-3091-8413)、李尚浩(0000-0003-4164-1827),路匡业(0000-0002-2992-5723)、Jun Min Suh(0000-0001-8506-0739)、Do Yoon Lee(0000-0003-4355- 8146)、Ne Myo Han(0000-0001-9389-7141)、Yun Seog Lee(0000-0002-2289-109X)、Dong-Hwan Kim(0000-0002-2753-0955)、Darrell Schlom(0000-0003-2493-6113)、Young Joon Hong(0000- 0002-1831-8004)、Jeehwan Kim(0000-0002-1547-0967)摘要远程外延的概念利用衬底的衰减电位二维范德华层覆盖在基底表面,这使得吸附原子能够进行远程相互作用,从而遵循基底的原子排列。然而,必须仔细定义生长模式,因为二维材料中的缺陷可以允许从基底直接外延,这可能会进一步诱导横向过度生长形成外延层。在这里,我们展示了一种只能在远程外延中观察到的独特趋势,与其他基于二维的外延方法不同。我们在图案化石墨烯上生长 BaTiO 3,以显示一个反例,其中基于针孔的外延无法形成连续的外延层。通过观察在没有单个针孔的石墨烯上生长的纳米级成核位点,我们在原子尺度上直观地证实了远程相互作用。从宏观上看,GaN微晶阵列的密度变化取决于衬底的离子性和石墨烯层数,这也证实了远程外延机制。