摘要:LIDAR已成为水中垂直分析光学参数的有前途的技术。单光子技术的应用使紧凑型海洋激光雷达系统的发展,促进了其在水下部署。这对于进行空气海界面上没有干扰的海洋观测至关重要。然而,同时在532 nm(βM)处于180°处的体积散射函数,而在弹性反向散发信号中,在532 nm(k m激光拉尔)处的激光雷达衰减系数仍然具有挑战性,尤其是在几何近距离信号中受到了几何形状重叠因子(GOF)的影响。为了应对这一挑战,这项工作提出了添加拉曼通道,使用单光子检测获得了拉曼反向散射的轮廓。通过用拉曼信号将弹性反向散射信号归一化,归一化信号对激光雷达衰减系数变化的敏感性大大降低。这允许将扰动方法应用于反转βM并随后获得K M LIDAR。此外,可以降低GOF和激光功率中波动对反转的影响。为了进一步提高分层水体的反转算法的准确性,提出了迭代算法。此外,由于激光雷达的光望远镜采用了一个小的光圈和狭窄的视野设计,因此K M LIDAR倾向于在532 nm处的光束衰减系数(C M)。使用Monte Carlo模拟,建立了C M和K M LIDAR之间的关系,从而允许C M衍生物来自K M LIDAR。最后,通过反演误差分析来验证该算法的可行性。通过在水箱中进行的初步实验来验证LiDAR系统的鲁棒性和算法的有效性。这些结果表明,LIDAR可以准确地介绍水的光学参数,从而有助于研究海洋中的颗粒有机碳(POC)。
摘要:电子,认知计算和传感的大规模现代技术革命为当今物联网(IoT)的开发提供了关键的基础架构,以用于广泛的应用。但是,由于端点设备的计算,存储和通信功能有限,因此物联网基础架构暴露于广泛的网络攻击中。因此,darknet或黑洞(污水坑)攻击很大,并且最近针对多种物联网通信服务发射的攻击向量。由于DarkNet地址空间是作为保留的Internet地址空间演变而来的,在全球合法的主机上不考虑使用,因此任何通信运输IC都被推测为未经请求的,并且独特地认为是探测器,反向散射或错误概括。因此,在本文中,我们在物联网网络中开发,调查和评估基于机器学习的DarkNet流量检测系统(DTD)的性能。主要是,我们使用六种监督的机器学习技术,包括行李决策树的合奏(BAG-DT),ADABOOST决策树共制(ADA-DT),RUSBOOSTED决策树组合(RUS-DT),可优化的决策树(O-DT),可优化的k-nearest k-nearest Inloes noest(O-nearest ofignize k-nearest nearp-egrigheat(o-o-knn)和Optim optig optig optim difcs和optigs ivciminant(Outigizigriminant(O-DSC))和DSC。我们在最近且全面的数据集上评估了已实施的DTD模型,称为CIC-Darknet-2020数据集,该数据集由当代实际的实际IoT通信流量组成,其中涉及四个差异类别,这些类别在一个数据集中结合了VPN和Tor Trapl IC,其中涵盖了涵盖广泛捕获的Cyber-Attacts和Deampersshide Serpect Service的单个数据集。我们的经验绩效分析表明,与其他实施的监督学习技术相比,Bagging集成技术(BAG-DT)更高的准确性和更低的错误率,得分为99.50%的分类精度,低推断开销为9.09 µ秒。最后,我们还与其他现有的DTDS型号进行了对比,并证明我们的最佳结果比以前的最新模型改善了(1.9〜27%)。
湍流对远程成像系统的影响表现为图像模糊效应,通常由系统中存在的相畸变量化。可以想象,根据传播体积内的大气湍流强度,可以理解模糊效果。获得湍流强度曲线的一种方法是使用动态范围的雷利信标系统,该系统利用沿策略性的信标沿着传播路径的范围进行了差异,从而有效地推导了影响光学成像系统的模糊畸变的特定路径段贡献的估计。已经设计了一种利用此技术的系统,并且已经构建了用于测试的原型。该系统被称为TARDIS,该系统代表湍流和气溶胶研究动态询问系统。TARDIS是一种光学传感系统,基于在相对不变的湍流诱导的波前扰动的静态时期内动态更改收集传感器和瑞利信标之间的范围。一种概念收集的场景由信标组成,在该信标中,基于激光脉冲和摄像头快门速度,空气分子和气溶胶颗粒反向散射图像在不同距离捕获的距离。获得基于TARDIS的湍流强度曲线的基于测量的估计是基于整理分段的折射率结构参数,𝐶𝐶2,值为大气的特定层。这些𝐶𝐶𝐶𝐶𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠2值是从炸参数段(0𝑖𝑖)中发展出来的,这些值是从Shack-Hartmann波前传感器上的相邻测量值中推导的。从传感系统收集光圈上存在的相位方差的平均值估计炸参数的单个值。跨孔的估计相方差的平均值是由从Shack-Hartmann波前传感器测得的梯度重建的区域倾斜砖中构建的。本文提供了理解大气湍流的基础理论,提供了当前可用的湍流估计技术的参考,并提供了针对TARDIS的细节,层析成像湍流估计方法以及收集概念数据的初始证明的分析。这项研究提供了一种新颖的手段,用于量化大气湍流的强度特征。利用概述的方法,使用了扰动波前的直接测量,这与估计湍流强度曲线的其他方式有不同。由于这种差异,可以使用动态范围的信标来产生湍流概况估计值,以增加对其他方法的置信度,或用作不容易受到相同误差源影响的独立测量技术。此外,由于该技术利用了波前的直接测量,因此可以想象,这可以与用于图像校正的自适应光学系统相关。
光纤传感在油气井中的应用。光纤传感有可能彻底改变油气行业的油井和油藏监测。光纤传感器的被动特性、安装成本低廉的潜力以及沿光纤整个长度进行密集分布测量的可能性,都为油气行业带来了诸多好处。安装在油气井中的光纤传感器获取的信息有助于提高效率、安全性和最终采收率。各种光纤传感器能够测量温度、压力、化学成分、应变和声学等物理效应。合适的数据基础设施和处理能力(将这些测量结果转化为有价值的信息)是任何传感系统的关键要素。基础由井中的合适光纤传感器和地面上的询问单元组成。本论文重点介绍基于两种光纤技术的传感硬件的开发:光纤布拉格光栅和瑞利散射。光纤布拉格光栅 (FBG) 是可以沿光纤电缆长度分布的点传感器。低成本、坚固耐用的询问单元是实现基于 FBG 的传感系统成本效益的关键因素之一。本文介绍了用于高温沙漠环境的此类询问单元的成功开发(第 3 章)。这一发展旨在促进低成本商业化实现。这些可以结合专用测试装置在内部进行评估(第 4 章)。分布式声学传感 (DAS) 是一种完全分布式传感技术,它利用标准光纤长度上自然发生的散射点的瑞利散射。反向散射能量可以解释为在整个光纤中实现准麦克风。DAS 近来备受关注,因为它在井下监测(例如压裂监测、流量监测)以及地球物理监测中具有潜在应用。本论文以地球物理应用为重点,描述了合适询问单元的开发(第 5 章)以及新原型在现场试验中的成功验证(第 6 章)。为了进一步扩大地球物理应用范围,需要提高光纤传感电缆对垂直于其轴向方向的地震波的灵敏度(第 7 章)。本论文介绍了此类电缆概念的发展,并介绍了成功的实验室和现场试验结果(第 8 章)。分布式传感技术具有降低成本并提高空间分辨率的潜力。然而,沿电缆长度的连续测量会在从光纤中的光学长度到井下环境中的位置的转换中引入不确定性。虽然已经提出了几种深度校准方法,本论文阐述了一种新方法的开发:磁深度定位器(第 9 章)。在井中安装多个磁铁组件可提供永久的深度参考点,这使其非常适合保证延时井和油藏监测所需的深度精度(第 10 章)。多种光纤传感技术可以在井下环境中组合使用。由此产生的大量沿光纤连续的时间和距离测量为石油和天然气行业的稳健井和油藏监测提供了独特的机会。
项目详细信息:手性是生命的定义特征,保留在进化中,并深深地嵌入生物过程中。所有基本生命的基础,例如蛋白质和DNA,都是手性的。传统上与结构特性有关,手性在过去的二十年中已成为独特的电子现象的来源,共同称为手性诱导的自旋选择性(CISS)。这些影响源于显着的观察结果,即通过手性分子的电子表现出自旋极化。虽然尚未完全了解基本机制,但CISS在实验上有充分的文献记录,尤其是在金属手续 - 中间连接处。最近,在纯有机二元分子中也观察到了它,并确定其超出接口的相关性。ciss被认为对生物学和技术具有深远的影响。效果可以通过减少反向散射或将自旋依赖性项引入手性结构的相互作用能来提高电子转移效率。CISS还可以直接影响化学反应吗?激进对机理(RPM)是一种描述自由基对的自旋依赖性重组的量子过程,它提供了将CISS生成的自旋极化转换为化学结果的诱人可能性。rpm描述了对自由基成对的量子自旋运动如何导致磁场效应,并通过提供磁受伤的基础的机械基础来获得一定的流行 - 许多动物物种感知地震磁场的能力 - 形成了量化生物学的核心培养基。2。我们假设将CISS耦合到rpm可以揭示新的量子行为,从而增强了激进对的弱磁场灵敏度,并保护其自旋动力学免受环境噪声引起的脱谐解。该项目探讨了CISS与RPM结合,可以加深我们对磁受伤,发现其他量子生物学现象的理解,并激发创新的生物自发性应用。研究目标:1。提前量子生物学:研究CISS调节的自由基对自旋动力学如何有助于磁体受体和其他磁场效应,以解决传统RPM模型中的局限性。利用技术的生物映射:探索自旋偏振电子传递如何在诸如光伏,电解碳固定和水分裂等技术中改善激进/极性驱动的过程。方法论:该跨学科项目通过以下方法整合了量子物理,计算化学和生物物理学:1。自旋动力学建模:开发分子动力学知情的模型,以CISS驱动的自由基对反应中的开放系统自旋动力学模型,在生物磁磁传感器加密组合体,DNA和相关系统中。结合了逼真的自旋松弛机制和自由基间相互作用。2。螺旋结构中的自旋极化:与Banerjee教授(UCLA)合作,使用相对论Kohn-Sham密度功能理论评估生物和合成螺旋结构的自旋极化潜力。3。技术应用:将CISS和RPM与扩散输入相结合
光纤传感在油气井中的应用。光纤传感有可能彻底改变石油和天然气行业的油井和油藏监测。光纤传感器的被动特性、经济高效的安装潜力以及沿光纤整个长度进行密集分布测量的可能性带来了诸多好处。使用安装在油气井中的光纤传感器获取的信息有助于提高效率、安全性和最终采收率。各种光纤传感器能够测量温度、压力、化学成分、应变和声学等物理效应。合适的数据基础设施和将这些测量结果转化为有价值信息的处理能力是任何传感系统的关键要素。基础由井中合适的光纤传感器和地面上的询问单元组成。本论文重点介绍基于两种光纤技术的传感硬件的开发:光纤布拉格光栅和瑞利散射。光纤布拉格光栅 (FBG) 是可以沿光纤电缆长度分布的点传感器。实现具有成本效益的基于 FBG 的传感系统的关键因素之一是低成本且坚固的询问装置。介绍了用于高温沙漠环境的此类询问装置的成功开发(第 3 章)。这项开发旨在促进商业低成本实现。这些可以结合专用测试装置在内部进行评估(第 4 章)。分布式声学传感 ( DAS ) 是一种完全分布式传感技术,利用标准光纤长度上自然发生的散射点的瑞利散射。反向散射能量可以被解释为在整个光纤中实现准麦克风。DAS 最近受到广泛关注,因为它在井下监测中具有潜在应用,例如压裂监测、流量监测以及地球物理监测。本论文以地球物理应用为重点,描述了合适的询问单元的开发(第 5 章)以及新原型在现场试验中的成功验证(第 6 章)。为了进一步扩大地球物理应用范围,需要增强光纤传感电缆对垂直于其轴向方向撞击的地震波的灵敏度(第 7 章)。本论文介绍了此类电缆概念的发展,并介绍了成功的实验室和现场试验结果(第 8 章)。分布式传感技术具有降低成本并提高空间分辨率的潜力。但是,沿电缆长度的连续测量会在从光纤中的光学长度到井下环境中的位置的转换中引入不确定性。虽然已经提出了几种深度校准方法,但本论文介绍了一种新方法的发展:磁深度定位器(第 9 章)。在井中安装多个磁铁组件可提供永久的深度参考点,这使其非常适合保障延时井和油藏监测所需的深度精度(第 10 章)。多种光纤传感技术可以组合在井下环境中。由此产生的沿光纤在时间和距离上连续的大量测量结果为石油和天然气行业的井和油藏监测提供了独特的机会。
1 ENSTA B RETAGNE , UMR CNRS 6027, IRDL, F-29200 B REST , F RANCE 2 V IBRACOUSTIC – CAE D URABILITY P REDICTION D EPARTMENT , 44474 C ARQUEFOU , F RANCE 3 N ANTES U NIVERSITÉ , E COLE C ENTRALE N ANTES , CNRS, G E M, UMR 6183, F-44000 N ANTES , F rance摘要弹性材料的特性受到成分和详细过程所产生的夹杂物的强烈影响。提出了一种方法,以根据其化学性质区分弹性体中对疲劳有害(大于几µm)的夹杂物,并使用足够的统计数据进行定量表征它们。使用三种技术并进行了比较:数字光学显微镜(OM),与能量分散X射线光谱相关的扫描电子显微镜(SEM)和X射线微计算机层析成像(µ-CT)。六种材料用于挑战该方法。除了通常的金属氧化物和碳黑色附聚物外,突出显示了三种非典型夹杂物,从而产生了特定的检测困难。与经典的阈值方法相比,开发了一个相关的图像分析过程,以自动和准确地检测获得的图像的包含物。不同夹杂物种群的形态和空间分布。µ-CT是包含物的分类和统计表征的最全面,最准确的方法。此外,可以使用反向散射电子(SEM-BSE)或数字OM获得有关包含物尺寸分布的相关数据。SEM-BSE比数字OM提供了更准确的结果。简介橡胶部分的性能与化合物中成分的分散质量有关。该分散剂取决于所用的成分以及详细过程(混合,注射和固化)1。用于橡胶零件的典型成分包括碳黑色(CB)或二氧化硅填充剂和ZnO。对成分的良好分散对于获得均匀的混合物,良好的机械性能以及批处理和批处理之间的性质的一致性很重要。此外,夹杂物和团聚物在这些材料的机械性能中起关键作用。例如,疲劳损伤通常以CB的聚集体2或在二氧化硅聚集体3或金属氧化物2,4处引发。因此,重要的是能够表征填充物分散体和橡胶化合物中的夹杂物。的确,这种分散在空间和大小上的知识允许检查混合物的质量,优化过程参数,并在微观结构和感兴趣的属性之间建立链接。*通讯作者。matthieu.le_saux@ensta-bretagne.fr在文献中已经提出了许多技术,以分析橡胶材料中成分(基本上是CB)的微或宏分散因素:•通过透射光学显微镜(OM)5,6的材料(厚度上的几微米至几千微米)观察材料的材料(厚度几英尺)的效果。观察到的较暗和较明亮的区域分别对应于CB团聚物,并在切割过程中脱离了聚集体;该方法在1960年代被用作标准(ASTM D-2663方法B)。
图 1-1:物联网示意图 ................................................ . ................................................. ...................7 图 1-2:不同类型的条形码;一维或线性、堆叠线性和二维 [3]。................................................ . ................................................. ................................................. .....7 图 1-3:安全元件(智能卡、护照、重要卡)市场的全球预测(2010 年至 2018 年售出数百万件) – Eurosmart [4] .... ... ……………………………… ................................8 图 1-4:2017 年非接触式市场:销量(单位:百万台)[4] ……………………………… ......9 图1-5:战争期间利用反向散射原理与雷达操作员进行通信 [7]。................................................ . ................................................... 31 图 1-26:带有外力传感器进行跟踪的 RFID 标签食品 [25] ................................... 33 图 1-27:a) 使用基于石墨烯的外部功能化区域的 RFID 传感器b) 电阻随相对湿度变化而变化的结果 [22] ................................................... 33 图 1-28:通信 RFID 传感器系列模拟................................................ ................. 35 图 1-29:具有阈值检测功能的生物 RFID 传感器:a) RFID 传感器剖面图,b) 俯视图,c) 不可逆石蜡基底的影响:芯片最小激活功率随温度变化的变化[61]。................................................ . ................................................. ...................................................... 39 图1 -30:示例取自带有敏感天线的 RFID 传感器文献,左侧:完全由石墨烯制成的天线 [47],右侧:由石墨烯精细部件组成的天线 [72]。...................................... 41 图 1-31:取自[76]的结果:a) 900 MHz 下蒸馏水的电特性 b ) RFID 传感器的最小激活功率,针对不同气温进行测量和平均。...................................... 43 图 1-32:结果取自[48]:a) 示意图由 Pt_rGO 实现功能化的射频识别 (RFID) 传感器标签。b) 柔性 RFID 传感器的照片。c) RFID 传感器的测量结果作为氢浓度的函数。................................................ . 43 图 2-1:无源 UHF RFID 传感器的天线功能化检测策略 ................................. ....... 56 图 2-2:无源 UHF RFID 标签的等效电路 [1] ........................................ ................................................ 57 图 2 -3: 辐射图偶极子与各向同性偶极子的比较 [5] ................................................ 59 图 2-4:极化电磁波的特征,a) 垂直极化,b) 水平极化和 c) 圆极化 [6] ........................................ . ................................................. ................................................. ....... 60 图 2-5:RFID 阅读器和标签之间的读取距离示意图 ................................ ................................................. 60 图 2-6:材料与电阻率的关系 [8] .... ................................................... ................................................... 62 图 2-7:法拉第实验:电枢电容器 [10] ................................ 62 图 2-8:电容器上电场感应的偶极矩原子 [10] ................................................ . .... 63 图 2-9:极化现象示意图 [10] ................................................ .. ................................... 64 图 2-10:复介电常数随频率的变化 [14] ................................................... 66 图2-11:实部和虚部复介电常数的计算....................................................... ................................. 66 图 2-12:介电常数和损耗对天线反射系数的影响....................... 67 图 2-13:小麦面筋的复介电常数与相对湿度 (RH) 的函数关系,频率为 868 MHz,温度为 25°C [13]。................................................ . ................................................. ................................................. ...................................... 68 图 2-14:拟议传感器天线的组成示意图。................................................ . ............ 69 图 2-15:用不同的方法对球体进行网格划分: (a) 球体的几何形状;使用 (b) 四面体 (FEM)、(c) 正交单元 (FDTD) 和 (d) 三角形 (MoM)[21]。...................................... 70